The cracking behavior of a composite beam with multiple reinforcing fibers under periodic traction-flexure is analyzed through a fracture mechanics-based model, where the edge-cracked beam section is exposed to external loads and crack bridging reactions due to the fibers. Assuming a rigid-perfectly plastic bridging law for the fibers and a linearelastic law for the matrix, the statically indeterminate bridging forces are obtained from compatibility conditions. Under general load paths, shakedown conditions are explored by making use of the Melan’s theorem, here reformulated for the discrete problem under consideration, where crack opening displacement at the fiber level plays the role of plastic strain in the counterpart problem of an elastic-plastic solid. The limit of shakedown is determined through an optimization procedure based on a linear programming technique.
Application of the Shakedown Theory to Brittle-Matrix Fiber-Reinforced Cracked Composite Beams Under Combined Traction and Flexure / Spagnoli, Andrea; Carpinteri, Andrea; Montanari, Lorenzo. - In: JOURNAL OF APPLIED MECHANICS. - ISSN 0021-8936. - 81:3(2014), pp. 031012-1-031012-8. [10.1115/1.4025313]
Application of the Shakedown Theory to Brittle-Matrix Fiber-Reinforced Cracked Composite Beams Under Combined Traction and Flexure
SPAGNOLI, Andrea;CARPINTERI, Andrea;MONTANARI, LORENZO
2014-01-01
Abstract
The cracking behavior of a composite beam with multiple reinforcing fibers under periodic traction-flexure is analyzed through a fracture mechanics-based model, where the edge-cracked beam section is exposed to external loads and crack bridging reactions due to the fibers. Assuming a rigid-perfectly plastic bridging law for the fibers and a linearelastic law for the matrix, the statically indeterminate bridging forces are obtained from compatibility conditions. Under general load paths, shakedown conditions are explored by making use of the Melan’s theorem, here reformulated for the discrete problem under consideration, where crack opening displacement at the fiber level plays the role of plastic strain in the counterpart problem of an elastic-plastic solid. The limit of shakedown is determined through an optimization procedure based on a linear programming technique.File | Dimensione | Formato | |
---|---|---|---|
142_JAM_2014.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
898.51 kB
Formato
Adobe PDF
|
898.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.