Bovine uterine infections are the most important cause of economic losses in the cattle industry. Although the etiology of uterine diseases is mainly ascribed to bacterial infection, they can also be associated with viral infection, such as bovine herpesvirus 4 (BoHV-4), which is often a secondary agent following bacteria. Besides microbial infection, many inflammatory molecules belonging to the innate immune response orchestrate the outcome of the infection. In the present study, the interaction between BoHV-4-infected bovine endometrial stromal cells and tumor necrosis factor alpha (TNF-alpha) was investigated. Bovine herpesvirus 4 possesses a special tropism toward endometrial stromal cells. For this reason, a simian virus 40 (SV40) immortalized endometrial stromal cell line (SV40BESC) was established; it was proven that it was stable, it expressed toll-like receptors (TLRs; from 1 to 10) and TNFalpha receptors I and II, and it was responsive to exogenous TNF-alpha. Further, an increase of BoHV-4 replication and cytopathic effect was observed in BoHV-4-infected and TNFalpha- treated SV40BESCs. This increase of viral replication was associated with BoHV-4 immediate early 2 (IE2) gene promoter trans-activation through the interaction of the nuclear factor KB (NFKB) with the putative NFKB-responsive elements found within BoHV-4 IE2 gene promoter, and this interaction was abolished when NFKB-responsive elements were deleted. These data shed light on two important and rather controversial issues: the role of TNF-alpha receptor, which is weakly expressed in the stromal layer of the bovine uterus, as well as the possible interactions between proinflammatory molecules, viral replication, and chronic uterine disease.
Bovine Endometrial Stromal Cells Support Tumor Necrosis Factor Alpha-Induced Bovine Herpesvirus Type 4 Enhanced Replication / Jacca, Sarah; Franceschi, Valentina; A., Colagiorgi; M., Sheldon; Donofrio, Gaetano. - In: BIOLOGY OF REPRODUCTION. - ISSN 0006-3363. - 88:(2013), pp. 135-135. [10.1095/biolreprod.112.106740]
Bovine Endometrial Stromal Cells Support Tumor Necrosis Factor Alpha-Induced Bovine Herpesvirus Type 4 Enhanced Replication
JACCA, Sarah;FRANCESCHI, Valentina;DONOFRIO, Gaetano
2013-01-01
Abstract
Bovine uterine infections are the most important cause of economic losses in the cattle industry. Although the etiology of uterine diseases is mainly ascribed to bacterial infection, they can also be associated with viral infection, such as bovine herpesvirus 4 (BoHV-4), which is often a secondary agent following bacteria. Besides microbial infection, many inflammatory molecules belonging to the innate immune response orchestrate the outcome of the infection. In the present study, the interaction between BoHV-4-infected bovine endometrial stromal cells and tumor necrosis factor alpha (TNF-alpha) was investigated. Bovine herpesvirus 4 possesses a special tropism toward endometrial stromal cells. For this reason, a simian virus 40 (SV40) immortalized endometrial stromal cell line (SV40BESC) was established; it was proven that it was stable, it expressed toll-like receptors (TLRs; from 1 to 10) and TNFalpha receptors I and II, and it was responsive to exogenous TNF-alpha. Further, an increase of BoHV-4 replication and cytopathic effect was observed in BoHV-4-infected and TNFalpha- treated SV40BESCs. This increase of viral replication was associated with BoHV-4 immediate early 2 (IE2) gene promoter trans-activation through the interaction of the nuclear factor KB (NFKB) with the putative NFKB-responsive elements found within BoHV-4 IE2 gene promoter, and this interaction was abolished when NFKB-responsive elements were deleted. These data shed light on two important and rather controversial issues: the role of TNF-alpha receptor, which is weakly expressed in the stromal layer of the bovine uterus, as well as the possible interactions between proinflammatory molecules, viral replication, and chronic uterine disease.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.