A Hermitian metric on a complex manifold is Kähler if and only if it approximates the Euclidean metric to order 2 at each point, in a suitable coordinate system. We prove here an analogous characterization of balanced metrics, namely, a Hermitian metric is balanced if and only if its fundamental form ω has closed trace and ωi, j (z) does not contain linear terms involving zi , z j , \bar zi , \bar z j , for each point, in a suitable coordinate system.
A characterization of balanced manifolds / Alessandrini, Lucia. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 352:4(2014), pp. 345-350. [10.1016/j.crma.2014.02.004]
A characterization of balanced manifolds
ALESSANDRINI, Lucia
2014-01-01
Abstract
A Hermitian metric on a complex manifold is Kähler if and only if it approximates the Euclidean metric to order 2 at each point, in a suitable coordinate system. We prove here an analogous characterization of balanced metrics, namely, a Hermitian metric is balanced if and only if its fundamental form ω has closed trace and ωi, j (z) does not contain linear terms involving zi , z j , \bar zi , \bar z j , for each point, in a suitable coordinate system.File | Dimensione | Formato | |
---|---|---|---|
CRASS15266.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
381.23 kB
Formato
Adobe PDF
|
381.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.