We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa1−xBa1.75−xLa0.25+xCu3Oy (0≤x≤0.4 and 6.4≤y≤7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.
Soft x-rays absorption and high-resolution x-ray diffraction study of superconducting CaxLa1-xBa1.75-xLa0.25+xCu3Oy system / S., Agrestini; S., Sanna; K., Zheng; DE RENZI, Roberto; E., Pusceddu; A., Bianconi; N. L., Saini. - In: JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS. - ISSN 0022-3697. - 75:(2014), pp. 259-264. [10.1016/j.jpcs.2013.09.026]
Soft x-rays absorption and high-resolution x-ray diffraction study of superconducting CaxLa1-xBa1.75-xLa0.25+xCu3Oy system
DE RENZI, Roberto;
2014-01-01
Abstract
We have studied the electronic structure of unoccupied states measured by O K-edge and Cu L-edge x-ray absorption spectroscopy (XAS), combined with crystal structure studied by high resolution powder x-ray diffraction (HRPXRD), of charge-compensated layered superconducting CaxLa1−xBa1.75−xLa0.25+xCu3Oy (0≤x≤0.4 and 6.4≤y≤7.3) cuprate. A detailed analysis shows that, apart from hole doping, chemical pressure on the electronically active CuO2 plane due to the lattice mismatch with the spacer layers greatly influences the superconducting properties of this system. The results suggest chemical pressure to be the most plausible parameter to control the maximum critical temperatures (Tcmax) in different cuprate families at optimum hole density.File | Dimensione | Formato | |
---|---|---|---|
JPhysChemSolids.75.259-Agrestini-XAS-CaLaBalaCuO.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.