There is growing evidence that cyclic alternating pattern (CAP) and arousals are woven into the basic mechanisms of sleep regulation. In the present study, the overnight sleep cycles (SC) of 20 normal subjects were analyzed according to their stage composition, CAP rate, phase A subtypes and arousals. Individual SC were then divided into 10 normalized temporal epochs. CAP parameters and arousals were measured in each epoch and averaged in relation to the SC order. Subtypes A2 and A3 of CAP in non-rapid eye movement (NREM) sleep, and arousals, both in REM and NREM sleep when not coincident with a A2 or A3 phases, were lumped together as fast electroencephalographic (EEG) activities (FA). Subtypes A1 of CAP, characterized by slow EEG activities (SA), were analyzed separately. The time distribution of SA and FA was compared to the mathematical model of normal sleep structure including functions representing the homeostatic process S, the circadian process C, the ultradian process generating NREM/REM cycles and the slow wave activity (SWA) resulting from the interaction between homeostatic and ultradian processes. The relationship between SA and FA and the sleep-model components was evaluated by multiple regression analysis in which SA and FA were considered as dependent variables while the covariates were the process S, process C, SWA, REM-on and REM-off activities and their squared values. Regression was highly significant (P < 0.0001) for both SA and FA. SA were prevalent in the first three SC, and exhibited single or multiple peaks immediately before and in the final part of deep sleep (stages 3 + 4). The peaks of FA were delayed and prevailed during the pre-REM periods of light sleep (stages 1 + 2) and during REM sleep. SA showed an exponential decline across the successive SC, according to the homeostatic process. In contrast, the distribution of FA was not influenced by the order of SC, with periodic peaks of FA occurring before the onset of REM sleep, in accordance with the REM-on switch. The dynamics of CAP and arousals during sleep can be viewed as an intermediate level between cellular activities and macroscale EEG phenomena as they reflect the decay of the homeostatic process and the interaction between REM-off and REM-on mechanisms while are slightly influenced by circadian rhythm.

CAP and arousals are involved in the homeostatic and ultradian sleep processes / Terzano, Mg; Parrino, Liborio; Smerieri, Arianna; Carli, F; Nobili, L; Donadio, S; Ferrillo, F.. - In: JOURNAL OF SLEEP RESEARCH. - ISSN 0962-1105. - 14:4(2005), pp. 359-368.

CAP and arousals are involved in the homeostatic and ultradian sleep processes

Terzano MG;PARRINO, Liborio;SMERIERI, Arianna;
2005-01-01

Abstract

There is growing evidence that cyclic alternating pattern (CAP) and arousals are woven into the basic mechanisms of sleep regulation. In the present study, the overnight sleep cycles (SC) of 20 normal subjects were analyzed according to their stage composition, CAP rate, phase A subtypes and arousals. Individual SC were then divided into 10 normalized temporal epochs. CAP parameters and arousals were measured in each epoch and averaged in relation to the SC order. Subtypes A2 and A3 of CAP in non-rapid eye movement (NREM) sleep, and arousals, both in REM and NREM sleep when not coincident with a A2 or A3 phases, were lumped together as fast electroencephalographic (EEG) activities (FA). Subtypes A1 of CAP, characterized by slow EEG activities (SA), were analyzed separately. The time distribution of SA and FA was compared to the mathematical model of normal sleep structure including functions representing the homeostatic process S, the circadian process C, the ultradian process generating NREM/REM cycles and the slow wave activity (SWA) resulting from the interaction between homeostatic and ultradian processes. The relationship between SA and FA and the sleep-model components was evaluated by multiple regression analysis in which SA and FA were considered as dependent variables while the covariates were the process S, process C, SWA, REM-on and REM-off activities and their squared values. Regression was highly significant (P < 0.0001) for both SA and FA. SA were prevalent in the first three SC, and exhibited single or multiple peaks immediately before and in the final part of deep sleep (stages 3 + 4). The peaks of FA were delayed and prevailed during the pre-REM periods of light sleep (stages 1 + 2) and during REM sleep. SA showed an exponential decline across the successive SC, according to the homeostatic process. In contrast, the distribution of FA was not influenced by the order of SC, with periodic peaks of FA occurring before the onset of REM sleep, in accordance with the REM-on switch. The dynamics of CAP and arousals during sleep can be viewed as an intermediate level between cellular activities and macroscale EEG phenomena as they reflect the decay of the homeostatic process and the interaction between REM-off and REM-on mechanisms while are slightly influenced by circadian rhythm.
2005
CAP and arousals are involved in the homeostatic and ultradian sleep processes / Terzano, Mg; Parrino, Liborio; Smerieri, Arianna; Carli, F; Nobili, L; Donadio, S; Ferrillo, F.. - In: JOURNAL OF SLEEP RESEARCH. - ISSN 0962-1105. - 14:4(2005), pp. 359-368.
File in questo prodotto:
File Dimensione Formato  
2005 J Sleep Res.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 179.39 kB
Formato Adobe PDF
179.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2599846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 62
social impact