Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.
Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut / Bottacini, F.; Milani, C.; Turroni, Francesca; Sánchez, B.; Foroni, E.; Duranti, Sabrina; Serafini, Fausta; Viappiani, Anna Luisa; Strati, F.; Ferrarini, Alessandro; Delledonne, M.; Henrissat, B.; Coutinho, P.; Fitzgerald, G. F.; Margolles, A.; van Sinderen, D.; Ventura, Marco. - In: PLOS ONE. - ISSN 1932-6203. - 7:9(2012), pp. 44229.-44243. [10.1371/journal.pone.0044229]
Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut
C. Milani;TURRONI, FRANCESCA;DURANTI, Sabrina;SERAFINI, Fausta;VIAPPIANI, Anna Luisa;FERRARINI, Alessandro;VENTURA, Marco
2012-01-01
Abstract
Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.File | Dimensione | Formato | |
---|---|---|---|
Bottacini-2012-PloS One.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.