Higher order evolution equations in Hilbert space may be sometimes better studied by ad hoc methods, rather than reducing them to first order systems. We illustrate this by solving the Cauchy problem for equations, which are variations on the theme of the Timoshenko beam equation. Also Kirchhoff's nonlinear correction is taken into account.

Fourth order evolution equations / A. Arosio; R. Natalini; S. Panizzi; M.G. Paoli. - (1993), pp. 282-287. ((Intervento presentato al convegno Equadiff 91 tenutosi a Barcellona, Spain nel 26-31 August 1991.

Fourth order evolution equations

AROSIO, Alberto Giorgio;PANIZZI, Stefano;
1993

Abstract

Higher order evolution equations in Hilbert space may be sometimes better studied by ad hoc methods, rather than reducing them to first order systems. We illustrate this by solving the Cauchy problem for equations, which are variations on the theme of the Timoshenko beam equation. Also Kirchhoff's nonlinear correction is taken into account.
9810219911
Fourth order evolution equations / A. Arosio; R. Natalini; S. Panizzi; M.G. Paoli. - (1993), pp. 282-287. ((Intervento presentato al convegno Equadiff 91 tenutosi a Barcellona, Spain nel 26-31 August 1991.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2507236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact