Ex situ bioengineering is one of the most promising perspectives in the field of regenerative medicine allowing for organ reconstruction outside the living body; i.e. on the laboratory bench. A number of hollow viscera of the cardiovascular, respiratory, genitourinary, and digestive systems have been successfully bioengineered ex situ, exploiting biocompatible scaffolds with a 3D morphology that recapitulates that of the native organ (organomorphic scaffold). In contrast, bioengineering of entire soft tissue organs and, in particular endocrine glands still remains a substantial challenge. Primary reasons are that no organomorphic scaffolding for endocrine viscera have as yet been entirely assembled using biocompatible materials, nor is there a bioreactor performance capable of supporting growth within the thickness range of the regenerating cell mass which has proven to be reliable enough to ensure formation of a complete macroscopic gland ex situ. Current technical options for reconstruction of endocrine viscera include either biocompatible 3D reticular scaffolds lacking any organomorphic geometry, or allogenic/xenogenic acellular 3D matrices derived from a gland similar to that to be bioengineered, eventually recellularized by autologous/heterologous cells. In 2007, our group designed, using biocompatible material, an organomorphic scaffold–bioreactor unit for bioengineering ex situ the human thyroid gland, chosen as a model for its simple anatomical organization (repetitive follicular cavities). This unit reproduces both the 3D native geometry of the human thyroid stromal/vascular scaffold, and the natural thyrocyte/vascular interface. It is now under intense investigation as an experimental tool to test cellular 3D auto-assembly of thyroid tissue and its related vascular system up to the ex situ generation of a 3D macroscopic thyroid gland. We believe that these studies will lay the groundwork for a new concept in regenerative medicine of soft tissue and endocrine organs; i.e. that the organomorphism of a biocompatible scaffold–bioreactor complex is essential to both the 3D organization of seeded stem cells/precursor cells and their phenotypic fate as glandular/parenchymal/vascular elements, eventually leading to a physiologically competent and immuno-tolerant bioconstruct, macroscopically suitable for transplantation and clinical applications.

Ex situ bioengineering of bioartificial endocrine glands: a new frontier in regenerative medicine of soft tissue organs / Toni, Roberto; Tampieri, A; Zini, N; Strusi, V; Sandri, M; Dallatana, Davide; Spaletta, G; Bassoli, E; Gatto, A; Ferrari, A; Martin, I.. - In: ANNALS OF ANATOMY. - ISSN 0940-9602. - 193:(2011), pp. 381-394. [10.1016/j.aanat.2011.06.004]

Ex situ bioengineering of bioartificial endocrine glands: a new frontier in regenerative medicine of soft tissue organs

TONI, Roberto;DALLATANA, Davide;
2011-01-01

Abstract

Ex situ bioengineering is one of the most promising perspectives in the field of regenerative medicine allowing for organ reconstruction outside the living body; i.e. on the laboratory bench. A number of hollow viscera of the cardiovascular, respiratory, genitourinary, and digestive systems have been successfully bioengineered ex situ, exploiting biocompatible scaffolds with a 3D morphology that recapitulates that of the native organ (organomorphic scaffold). In contrast, bioengineering of entire soft tissue organs and, in particular endocrine glands still remains a substantial challenge. Primary reasons are that no organomorphic scaffolding for endocrine viscera have as yet been entirely assembled using biocompatible materials, nor is there a bioreactor performance capable of supporting growth within the thickness range of the regenerating cell mass which has proven to be reliable enough to ensure formation of a complete macroscopic gland ex situ. Current technical options for reconstruction of endocrine viscera include either biocompatible 3D reticular scaffolds lacking any organomorphic geometry, or allogenic/xenogenic acellular 3D matrices derived from a gland similar to that to be bioengineered, eventually recellularized by autologous/heterologous cells. In 2007, our group designed, using biocompatible material, an organomorphic scaffold–bioreactor unit for bioengineering ex situ the human thyroid gland, chosen as a model for its simple anatomical organization (repetitive follicular cavities). This unit reproduces both the 3D native geometry of the human thyroid stromal/vascular scaffold, and the natural thyrocyte/vascular interface. It is now under intense investigation as an experimental tool to test cellular 3D auto-assembly of thyroid tissue and its related vascular system up to the ex situ generation of a 3D macroscopic thyroid gland. We believe that these studies will lay the groundwork for a new concept in regenerative medicine of soft tissue and endocrine organs; i.e. that the organomorphism of a biocompatible scaffold–bioreactor complex is essential to both the 3D organization of seeded stem cells/precursor cells and their phenotypic fate as glandular/parenchymal/vascular elements, eventually leading to a physiologically competent and immuno-tolerant bioconstruct, macroscopically suitable for transplantation and clinical applications.
2011
Ex situ bioengineering of bioartificial endocrine glands: a new frontier in regenerative medicine of soft tissue organs / Toni, Roberto; Tampieri, A; Zini, N; Strusi, V; Sandri, M; Dallatana, Davide; Spaletta, G; Bassoli, E; Gatto, A; Ferrari, A; Martin, I.. - In: ANNALS OF ANATOMY. - ISSN 0940-9602. - 193:(2011), pp. 381-394. [10.1016/j.aanat.2011.06.004]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2478253
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact