In industrial automation and robotic applications, direct-drive motors represent a suitable solution to friction and backlash problems typical of mechanical reduction gears. Vari- able reluctance (VR) motors are well suited for direct-drive implementation but, because of the strongly nonlinear elec- tromechanical characteristics, these motors are traditionally designed as stepper motors. The main aim of the work described in the paper is the design of a high-performance ripple-free dynamic torque controller for a VR motor, idtended for trajectory tracking in robotic applica- tions. An original modeling approach is investigated in order to simplify the design of the high-performance torque controller. Model structure and parameter estimation techniques are pre- sented. Different approaches to the overall torque controller design problein are also discussed and the solution adopted is illustrated. A cascade controller structure is considered. It con- sists of a feedforward nonlinear torque compensator, cascaded to a nonlinear flux or current closed-loop controller. The feed- forward compensator is carefully considered and optimization techniques are used for its design. Two optimization criteria are proposed: the first minimizes copper losses, whereas the second minimizes the maximum value of the motor-feeding voltage. Although developed for a specific commercial motor, the pro- posed modeling and optimization strategies can be used for other VR motors with magnetically decoupled phases, both ro- tating and lidear. Laboratory experiments for model validation and preliminary simulation results of the overall torque control system are presented.

Modeling and control strategies for a variable reluctance direct-drive motor / F., Filicori; GUARINO LO BIANCO, Corrado; A., Tonielli. - In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. - ISSN 0278-0046. - 40, NO. 1:(1993), pp. 105-115. [10.1109/41.184827]

Modeling and control strategies for a variable reluctance direct-drive motor

GUARINO LO BIANCO, Corrado;
1993-01-01

Abstract

In industrial automation and robotic applications, direct-drive motors represent a suitable solution to friction and backlash problems typical of mechanical reduction gears. Vari- able reluctance (VR) motors are well suited for direct-drive implementation but, because of the strongly nonlinear elec- tromechanical characteristics, these motors are traditionally designed as stepper motors. The main aim of the work described in the paper is the design of a high-performance ripple-free dynamic torque controller for a VR motor, idtended for trajectory tracking in robotic applica- tions. An original modeling approach is investigated in order to simplify the design of the high-performance torque controller. Model structure and parameter estimation techniques are pre- sented. Different approaches to the overall torque controller design problein are also discussed and the solution adopted is illustrated. A cascade controller structure is considered. It con- sists of a feedforward nonlinear torque compensator, cascaded to a nonlinear flux or current closed-loop controller. The feed- forward compensator is carefully considered and optimization techniques are used for its design. Two optimization criteria are proposed: the first minimizes copper losses, whereas the second minimizes the maximum value of the motor-feeding voltage. Although developed for a specific commercial motor, the pro- posed modeling and optimization strategies can be used for other VR motors with magnetically decoupled phases, both ro- tating and lidear. Laboratory experiments for model validation and preliminary simulation results of the overall torque control system are presented.
1993
Modeling and control strategies for a variable reluctance direct-drive motor / F., Filicori; GUARINO LO BIANCO, Corrado; A., Tonielli. - In: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. - ISSN 0278-0046. - 40, NO. 1:(1993), pp. 105-115. [10.1109/41.184827]
File in questo prodotto:
File Dimensione Formato  
FilGuaTon93.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2438377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 70
social impact