In this article, we study the set of balanced metrics given in Donaldson’s terminology (J. Diff. Geometry 59:479–522, 2001) on a compact complex manifold M which are homothetic to a given balanced one. This question is related to various properties of the Tian-Yau-Zelditch approximation theorem for Kähler metrics. We prove that this set is finite when M admits a non-positive Kähler–Einstein metric, in the case of non-homogenous toric Kähler-Einstein manifolds of dimension ≤ 4 and in the case of the constant scalar curvature metrics found in Arezzo and Pacard (Acta. Math. 196(2):179–228, 2006; Ann. Math. 170(2):685–738, 2009).

On homothetic balanced metrics / Arezzo, Claudio; A., Loi; F., Zuddas. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 41:(2012), pp. 473-491. [10.1007/s10455-011-9295-8]

On homothetic balanced metrics

AREZZO, Claudio;
2012-01-01

Abstract

In this article, we study the set of balanced metrics given in Donaldson’s terminology (J. Diff. Geometry 59:479–522, 2001) on a compact complex manifold M which are homothetic to a given balanced one. This question is related to various properties of the Tian-Yau-Zelditch approximation theorem for Kähler metrics. We prove that this set is finite when M admits a non-positive Kähler–Einstein metric, in the case of non-homogenous toric Kähler-Einstein manifolds of dimension ≤ 4 and in the case of the constant scalar curvature metrics found in Arezzo and Pacard (Acta. Math. 196(2):179–228, 2006; Ann. Math. 170(2):685–738, 2009).
2012
On homothetic balanced metrics / Arezzo, Claudio; A., Loi; F., Zuddas. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - 41:(2012), pp. 473-491. [10.1007/s10455-011-9295-8]
File in questo prodotto:
File Dimensione Formato  
arloizufinal.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 325.08 kB
Formato Adobe PDF
325.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2437515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact