In this paper, we extend the notion of Futaki invariant to big and nef classes in such a way that it defines a continuous function on the Kähler cone up to the boundary. We apply this concept to prove that reduced normal crossing singularities are sufficient to check K-semistability. A similar improvement on Donaldson’s lower bound for the Calabi energy is given.

Singularities and K-semistability / C. Arezzo; A. Della Vedova; G. La Nave. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2012:4(2012), pp. 849-869. [10.1093/imrn/rnr044]

Singularities and K-semistability

AREZZO, Claudio;
2012

Abstract

In this paper, we extend the notion of Futaki invariant to big and nef classes in such a way that it defines a continuous function on the Kähler cone up to the boundary. We apply this concept to prove that reduced normal crossing singularities are sufficient to check K-semistability. A similar improvement on Donaldson’s lower bound for the Calabi energy is given.
Singularities and K-semistability / C. Arezzo; A. Della Vedova; G. La Nave. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2012:4(2012), pp. 849-869. [10.1093/imrn/rnr044]
File in questo prodotto:
File Dimensione Formato  
IMRN.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 181.12 kB
Formato Adobe PDF
181.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2437508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact