We consider the problem of existence of constant scalar curvature Kähler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai–Umemura–Tian like example of Fano 5-fold admitting no Kähler–Einstein metric, and a strong evidence of K-stability of complete intersections in Grassmannians.
On the K-stability of complete intersections in polarized manifolds / Arezzo, Claudio; DELLA VEDOVA, Alberto. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 226:6(2011), pp. 4796-4815. [10.1016/j.aim.2010.12.018]
On the K-stability of complete intersections in polarized manifolds
AREZZO, Claudio;DELLA VEDOVA, Alberto
2011-01-01
Abstract
We consider the problem of existence of constant scalar curvature Kähler metrics on complete intersections of sections of vector bundles. In particular we give general formulas relating the Futaki invariant of such a manifold to the weight of sections defining it and to the Futaki invariant of the ambient manifold. As applications we give a new Mukai–Umemura–Tian like example of Fano 5-fold admitting no Kähler–Einstein metric, and a strong evidence of K-stability of complete intersections in Grassmannians.File | Dimensione | Formato | |
---|---|---|---|
Arezzo-Della Vedova Adv.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
184.83 kB
Formato
Adobe PDF
|
184.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.