In this paper, we prove short time existence, uniqueness, and regularity for a surface diffusion evolution equation with curvature regularization in the context of epitaxially strained two-dimensional films. This is achieved by using the H^{-1}-gradient flow structure of the evolution law, via De Giorgi’s minimizing movements. This seems to be the first short time existence result for a surface diffusion type geometric evolution equation in the presence of elasticity.

Motion of Elastic Thin Films by Anisotropic Surface Diffusion with Curvature Regularization / I., Fonseca; N., Fusco; G., Leoni; Morini, Massimiliano. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 205:2(2012), pp. 425-466. [10.1007/s00205-012-0509-4]

Motion of Elastic Thin Films by Anisotropic Surface Diffusion with Curvature Regularization

MORINI, Massimiliano
2012-01-01

Abstract

In this paper, we prove short time existence, uniqueness, and regularity for a surface diffusion evolution equation with curvature regularization in the context of epitaxially strained two-dimensional films. This is achieved by using the H^{-1}-gradient flow structure of the evolution law, via De Giorgi’s minimizing movements. This seems to be the first short time existence result for a surface diffusion type geometric evolution equation in the presence of elasticity.
2012
Motion of Elastic Thin Films by Anisotropic Surface Diffusion with Curvature Regularization / I., Fonseca; N., Fusco; G., Leoni; Morini, Massimiliano. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 205:2(2012), pp. 425-466. [10.1007/s00205-012-0509-4]
File in questo prodotto:
File Dimensione Formato  
Fon-Fus-Leo-Mor2012.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 447.62 kB
Formato Adobe PDF
447.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2434635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact