The agranular frontal cortex is formed by several distinct functional areas. There is no agreement, however, on its cytoarchitectonic organization. The aim of this study was to redefine the cytoarchitectonic organization of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. A particular goal was to find out whether the so-called supplementary motor area (SMA) is cytoarchitectonically different from the rest of area 6 and whether it can be considered as a single, independent cytoarchitectonic area. The results showed that, rostral to F1 (area 4), four architectonic areas can be recognized in the superior (dorsal) and mesial area 6. Two fo them are located on mesial cortical surface (F3 caudally and F6 rostrally) and two on superior cortical convexity (F2 caudally and F7 rostrally). The main cytoarchitectonic features of the five identified areas can be summarized as follows. F1: (1) giant pyramidal cells organized in multiple rows, (2) columnar pattern extending from the white matter to the superficial layers, (3) low cellular density in the lower part of layer III. F3: (1) high cellular density in the lower part of layer III, which fuses with a dense Va, (2) columnar pattern present only in the deepest layer, (3) occasional presence of giant pyramidal cells in layer Vb. F6: (1) prominent layer V, (2) absence of sublayer Vb, (3) homogeneous cell density in superficial layers. F2: (1) thin row of medium-size pyramids in the lowest part of layer III, (2) columnar pattern extending to the superficial layers, (3) dense layer Va, (4) few, scattered giant pyramids in layer Vb. F7: (1) prominent layer V, (2) bipartite layer VI. Areas F1, F2, and F3, as defined cytoarchitectonically, coincided with the homonymous histochemical areas. The present data showed also that area 24 is formed by four subareas: 24a, b, c and d. Areas 24a and b occupy the ventral part of area 24, whereas its dorsal part is formed by area 24c, located rostrally, and area 24d, located caudally. The following features distinguish area 24d from area 24c: (1) larger pyramidal cells in layer V, (2) presence of medium-size pyramidal cells in the lower part of layer III, (3) more prominent columnar pattern, (4) higher myelinization with the presence of an evident horizontal plexus. Mesial area 6 is usually considered as a single functional entity (SMA). Our findings show that this cortical region is formed by two distinct cytoarchitectonic areas.(ABSTRACT TRUNCATED AT 400 WORDS)
Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey / M., Matelli; Luppino, Giuseppe; G., Rizzolatti. - In: JOURNAL OF COMPARATIVE NEUROLOGY. - ISSN 0021-9967. - 311:(1991), pp. 445-462. [10.1002/cne.903110402]
Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey.
LUPPINO, Giuseppe;
1991-01-01
Abstract
The agranular frontal cortex is formed by several distinct functional areas. There is no agreement, however, on its cytoarchitectonic organization. The aim of this study was to redefine the cytoarchitectonic organization of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. A particular goal was to find out whether the so-called supplementary motor area (SMA) is cytoarchitectonically different from the rest of area 6 and whether it can be considered as a single, independent cytoarchitectonic area. The results showed that, rostral to F1 (area 4), four architectonic areas can be recognized in the superior (dorsal) and mesial area 6. Two fo them are located on mesial cortical surface (F3 caudally and F6 rostrally) and two on superior cortical convexity (F2 caudally and F7 rostrally). The main cytoarchitectonic features of the five identified areas can be summarized as follows. F1: (1) giant pyramidal cells organized in multiple rows, (2) columnar pattern extending from the white matter to the superficial layers, (3) low cellular density in the lower part of layer III. F3: (1) high cellular density in the lower part of layer III, which fuses with a dense Va, (2) columnar pattern present only in the deepest layer, (3) occasional presence of giant pyramidal cells in layer Vb. F6: (1) prominent layer V, (2) absence of sublayer Vb, (3) homogeneous cell density in superficial layers. F2: (1) thin row of medium-size pyramids in the lowest part of layer III, (2) columnar pattern extending to the superficial layers, (3) dense layer Va, (4) few, scattered giant pyramids in layer Vb. F7: (1) prominent layer V, (2) bipartite layer VI. Areas F1, F2, and F3, as defined cytoarchitectonically, coincided with the homonymous histochemical areas. The present data showed also that area 24 is formed by four subareas: 24a, b, c and d. Areas 24a and b occupy the ventral part of area 24, whereas its dorsal part is formed by area 24c, located rostrally, and area 24d, located caudally. The following features distinguish area 24d from area 24c: (1) larger pyramidal cells in layer V, (2) presence of medium-size pyramidal cells in the lower part of layer III, (3) more prominent columnar pattern, (4) higher myelinization with the presence of an evident horizontal plexus. Mesial area 6 is usually considered as a single functional entity (SMA). Our findings show that this cortical region is formed by two distinct cytoarchitectonic areas.(ABSTRACT TRUNCATED AT 400 WORDS)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.