The author gives the following extension of a result of M. Raimondo and A. Silva. Let X be a holomorphically separable complex space (reduced and with countable topology) of dimension n ≥ 1, F a coherent analytic sheaf on X and q a fixed integer > −codh F. Then if Hk(X; F) = 0 for all k > q, the vector space Hq(X; F) is either zero or infinite-dimensional.

On the Cohomology of a Holomorphically Separable Complex Analytic Space / Alessandrini, Lucia. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. A. - ISSN 0392-4033. - 6:(1982), pp. 261-268.

On the Cohomology of a Holomorphically Separable Complex Analytic Space

ALESSANDRINI, Lucia
1982-01-01

Abstract

The author gives the following extension of a result of M. Raimondo and A. Silva. Let X be a holomorphically separable complex space (reduced and with countable topology) of dimension n ≥ 1, F a coherent analytic sheaf on X and q a fixed integer > −codh F. Then if Hk(X; F) = 0 for all k > q, the vector space Hq(X; F) is either zero or infinite-dimensional.
1982
On the Cohomology of a Holomorphically Separable Complex Analytic Space / Alessandrini, Lucia. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. A. - ISSN 0392-4033. - 6:(1982), pp. 261-268.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2429635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact