The author gives the following extension of a result of M. Raimondo and A. Silva. Let X be a holomorphically separable complex space (reduced and with countable topology) of dimension n ≥ 1, F a coherent analytic sheaf on X and q a fixed integer > −codh F. Then if Hk(X; F) = 0 for all k > q, the vector space Hq(X; F) is either zero or infinite-dimensional.
On the Cohomology of a Holomorphically Separable Complex Analytic Space / Alessandrini, Lucia. - In: BOLLETTINO DELL'UNIONE MATEMATICA ITALIANA. A. - ISSN 0392-4033. - 6:(1982), pp. 261-268.
On the Cohomology of a Holomorphically Separable Complex Analytic Space
ALESSANDRINI, Lucia
1982-01-01
Abstract
The author gives the following extension of a result of M. Raimondo and A. Silva. Let X be a holomorphically separable complex space (reduced and with countable topology) of dimension n ≥ 1, F a coherent analytic sheaf on X and q a fixed integer > −codh F. Then if Hk(X; F) = 0 for all k > q, the vector space Hq(X; F) is either zero or infinite-dimensional.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.