In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances. (C) 2006 Elsevier B.V. All rights reserved.

Adaptive solution of infinite linear systems by Krylov subspace methods / P., Favati; Lotti, Grazia; O., Menchi; F., Romani. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - 210:(2007), pp. 191-199. [10.1016/j.cam.2006.10.063]

Adaptive solution of infinite linear systems by Krylov subspace methods

LOTTI, Grazia;
2007-01-01

Abstract

In this paper we consider the problem of approximating the solution of infinite linear systems, finitely expressed by a sparse coefficient matrix. We analyse an algorithm based on Krylov subspace methods embedded in an adaptive enlargement scheme. The management of the algorithm is not trivial, due to the irregular convergence behaviour frequently displayed by Krylov subspace methods for nonsymmetric systems. Numerical experiments, carried out on several test problems, indicate that the more robust methods, such as GMRES and QMR, embedded in the adaptive enlargement scheme, exhibit good performances. (C) 2006 Elsevier B.V. All rights reserved.
2007
Adaptive solution of infinite linear systems by Krylov subspace methods / P., Favati; Lotti, Grazia; O., Menchi; F., Romani. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - 210:(2007), pp. 191-199. [10.1016/j.cam.2006.10.063]
File in questo prodotto:
File Dimensione Formato  
adaptive.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 238.42 kB
Formato Adobe PDF
238.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2410551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact