The Allen Brain Atlas (ABA) is a cellular-resolution, genome-wide map of gene expression in the mouse brain which allows users to compare gene expression patterns in neuroanatomical structures. The correct localization of the structures is the first step to carry on this comparison in an automatic way. In this paper we present a completely automatic tool for the localization of the hippocampus that can be easily adapted also to other subcortical structures. This goal is achieved in two distinct phases. The first phase, called "best reference slice selection", is performed by comparing the image of the brain with a reference Atlas provided by ABA using a two-step affine registration. By doing so the system is able to automatically find to which brain section the image corresponds and wherein the image the hippocampus is roughly located. The second phase, the proper "hippocampus localization", is based on a method that combines Particle Swarm Optimization (PSO) and a novel technique inspired by Active Shape Models (ASMs). The hippocampus is found by adapting a deformable model derived statistically, in order to make it overlap with the hippocampus image. Experiments on a test set of 120 images yielded a perfect or good localization in 89.2% of cases.
Automatic hippocampus localization in histological images using PSO-based deformable models / R., Ugolotti; P., Mesejo; Cagnoni, Stefano; M., Giacobini; F., Di Cunto. - ELETTRONICO. - (2011), pp. 487-494. (Intervento presentato al convegno Genetic and Evolutionary Computation Conference (GECCO) 2011 tenutosi a Dublin, Eire nel 12-16 luglio 2011) [10.1145/2001858.2002038].
Automatic hippocampus localization in histological images using PSO-based deformable models
CAGNONI, Stefano;
2011-01-01
Abstract
The Allen Brain Atlas (ABA) is a cellular-resolution, genome-wide map of gene expression in the mouse brain which allows users to compare gene expression patterns in neuroanatomical structures. The correct localization of the structures is the first step to carry on this comparison in an automatic way. In this paper we present a completely automatic tool for the localization of the hippocampus that can be easily adapted also to other subcortical structures. This goal is achieved in two distinct phases. The first phase, called "best reference slice selection", is performed by comparing the image of the brain with a reference Atlas provided by ABA using a two-step affine registration. By doing so the system is able to automatically find to which brain section the image corresponds and wherein the image the hippocampus is roughly located. The second phase, the proper "hippocampus localization", is based on a method that combines Particle Swarm Optimization (PSO) and a novel technique inspired by Active Shape Models (ASMs). The hippocampus is found by adapting a deformable model derived statistically, in order to make it overlap with the hippocampus image. Experiments on a test set of 120 images yielded a perfect or good localization in 89.2% of cases.File | Dimensione | Formato | |
---|---|---|---|
p487-ugolotti.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.