Automatic image orientation of close-range image blocks is becoming a task of increasing importance in the practice of photogrammetry. Although image orientation procedures based on interactive tie point measurements do not require any preferential block structure, the use of structured sequences can help to accomplish this task in an automated way. Automatic orientation of image sequences has been widely investigated in the Computer Vision community. Here the method is generally named "Structure from Motion" (SfM), or "Structure and Motion". These refer to the simultaneous estimation of the image orientation parameters and 3D object points of a scene from a set of image correspondences. Such approaches, that generally disregard camera calibration data, do not ensure an accurate 3D reconstruction, which is a requirement for photogrammetric projects. The major contribution of SfM is therefore viewed in the photogrammetric community as a powerful tool to automatically provide a dense set of tie points as well as initial parameters for a final rigorous bundle adjustment. The paper, after a brief overview of automatic procedures for close-range image sequence orientation, will show some characteristic examples. Although powerful and reliable image orientation solutions are nowadays available at research level, there are certain questions that are still open. Thus the paper will also report some open issues, like the geometric characteristics of the sequences, scene's texture and shape, ground constraints (control points and/or free-network adjustment), feature matching techniques, outlier rejection and bundle adjustment models.

Experiences and achievements in automated image sequence orientation for close-range photogrammetric projects / L., Barazzetti; Forlani, Gianfranco; F., Remondino; Roncella, Riccardo; M., Scaioni. - 8085:(2011). [10.1117/12.890116]

Experiences and achievements in automated image sequence orientation for close-range photogrammetric projects

FORLANI, Gianfranco;RONCELLA, Riccardo;
2011-01-01

Abstract

Automatic image orientation of close-range image blocks is becoming a task of increasing importance in the practice of photogrammetry. Although image orientation procedures based on interactive tie point measurements do not require any preferential block structure, the use of structured sequences can help to accomplish this task in an automated way. Automatic orientation of image sequences has been widely investigated in the Computer Vision community. Here the method is generally named "Structure from Motion" (SfM), or "Structure and Motion". These refer to the simultaneous estimation of the image orientation parameters and 3D object points of a scene from a set of image correspondences. Such approaches, that generally disregard camera calibration data, do not ensure an accurate 3D reconstruction, which is a requirement for photogrammetric projects. The major contribution of SfM is therefore viewed in the photogrammetric community as a powerful tool to automatically provide a dense set of tie points as well as initial parameters for a final rigorous bundle adjustment. The paper, after a brief overview of automatic procedures for close-range image sequence orientation, will show some characteristic examples. Although powerful and reliable image orientation solutions are nowadays available at research level, there are certain questions that are still open. Thus the paper will also report some open issues, like the geometric characteristics of the sequences, scene's texture and shape, ground constraints (control points and/or free-network adjustment), feature matching techniques, outlier rejection and bundle adjustment models.
2011
Experiences and achievements in automated image sequence orientation for close-range photogrammetric projects / L., Barazzetti; Forlani, Gianfranco; F., Remondino; Roncella, Riccardo; M., Scaioni. - 8085:(2011). [10.1117/12.890116]
File in questo prodotto:
File Dimensione Formato  
Barazzetti_etal_Videometrics2011.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2363675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 20
social impact