Powder X-ray diffraction patterns between 90 and 935 K have been collected for nine plagioclase samples, with different compositions and degree of Al-Si order. The refined volumes have been modeled using the Wallace and Suzuki formulations based on the Mie-Gruneisen EOS. No significant difference has been found between the Suzuki and Wallace formulations, and between the Einstein and Debye approximations of lattice energy. A Wallace model with the first derivative of the bulk modulus constrained to the experimentally determined values leads to refined Gruneisen parameters between 0.49 and 0.41, without any definite trend between albite and anorthite; the Einstein temperature in intermediate plagioclase is theta(E) similar to 650 K, but it is lower in albite [theta(E) = 453(5) K]. A good fit with experimental heat capacity data for the An(60)Ab(40) composition has been found using two Einstein-like oscillators with theta(E1) = 230(3) K and theta(E2) = 952(7) K, X(theta E1) = 0.391 (5). The change with temperature in An(60)Ab(40) of the Gruneisen parameter is small at T > 150 K, with a slight decrease with temperature. Similar results could be obtained by independent refinement of an Einstein model with two oscillators to the volume data for the same composition [theta(E1) = 205(30) K, theta(E2) = 873(52) K, and X = 0.36(4)]. The components of the thermal strain tensor with temperature have been calculated and confirm that the greatest deformation is along the a* axis, i.e., along the extension direction of the crankshaft chains of the feldspar structure. Anomalous behavior of the strain tensor components in the a-c plane has been observed in albite and An(27)Ab(73), and is related to an increase in the c unit-cell parameter with decreasing temperature.

Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements / Tribaudino, Mario; M., Bruno; F., Nestola; D., Pasqual; R., Angel. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 96:(2011), pp. 992-1002. [10.2138/am.2011.3722]

Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements

TRIBAUDINO, Mario;
2011-01-01

Abstract

Powder X-ray diffraction patterns between 90 and 935 K have been collected for nine plagioclase samples, with different compositions and degree of Al-Si order. The refined volumes have been modeled using the Wallace and Suzuki formulations based on the Mie-Gruneisen EOS. No significant difference has been found between the Suzuki and Wallace formulations, and between the Einstein and Debye approximations of lattice energy. A Wallace model with the first derivative of the bulk modulus constrained to the experimentally determined values leads to refined Gruneisen parameters between 0.49 and 0.41, without any definite trend between albite and anorthite; the Einstein temperature in intermediate plagioclase is theta(E) similar to 650 K, but it is lower in albite [theta(E) = 453(5) K]. A good fit with experimental heat capacity data for the An(60)Ab(40) composition has been found using two Einstein-like oscillators with theta(E1) = 230(3) K and theta(E2) = 952(7) K, X(theta E1) = 0.391 (5). The change with temperature in An(60)Ab(40) of the Gruneisen parameter is small at T > 150 K, with a slight decrease with temperature. Similar results could be obtained by independent refinement of an Einstein model with two oscillators to the volume data for the same composition [theta(E1) = 205(30) K, theta(E2) = 873(52) K, and X = 0.36(4)]. The components of the thermal strain tensor with temperature have been calculated and confirm that the greatest deformation is along the a* axis, i.e., along the extension direction of the crankshaft chains of the feldspar structure. Anomalous behavior of the strain tensor components in the a-c plane has been observed in albite and An(27)Ab(73), and is related to an increase in the c unit-cell parameter with decreasing temperature.
2011
Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements / Tribaudino, Mario; M., Bruno; F., Nestola; D., Pasqual; R., Angel. - In: AMERICAN MINERALOGIST. - ISSN 0003-004X. - 96:(2011), pp. 992-1002. [10.2138/am.2011.3722]
File in questo prodotto:
File Dimensione Formato  
Tribaudino_p992-1002_11.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 4.28 MB
Formato Adobe PDF
4.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2363416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact