We give a 3-descent procedure to bound and, in some cases, compute the 3-part of the Selmer and Tate-Shafarevich group of the curves y^2=x^3+a, a a nonzero integer. This enables us to verify the whole Birch and Swinnerton-Dyer conjecture for some of such curves.
Three-descent and the Birch and Swinnerton-Dyer conjecture / Bandini, Andrea. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - 34:(2004), pp. 13-27. [10.1216/rmjm/1181069889]
Three-descent and the Birch and Swinnerton-Dyer conjecture
BANDINI, Andrea
2004-01-01
Abstract
We give a 3-descent procedure to bound and, in some cases, compute the 3-part of the Selmer and Tate-Shafarevich group of the curves y^2=x^3+a, a a nonzero integer. This enables us to verify the whole Birch and Swinnerton-Dyer conjecture for some of such curves.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
RMJM2004.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
158.35 kB
Formato
Adobe PDF
|
158.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.