Let F be a function field of characteristic p>0, \mathcal{F}/F a \mathbb{Z}_l^d-extension (for some prime l\neq p) and E/F a non-isotrivial elliptic curve. We study the behaviour of the r-parts of the Selmer groups ( r any prime) in the subextensions of \mathcal{F} via appropriate versions of Mazur's Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of \mathcal{F}/F.
Selmer groups for elliptic curves in Z_l^d-extensions of function fields of characteristic p / Bandini, Andrea; I., Longhi. - In: ANNALES DE L'INSTITUT FOURIER. - ISSN 1777-5310. - 59:(2009), pp. 2301-2327. [10.5802/aif.2491]
Selmer groups for elliptic curves in Z_l^d-extensions of function fields of characteristic p
BANDINI, Andrea;
2009-01-01
Abstract
Let F be a function field of characteristic p>0, \mathcal{F}/F a \mathbb{Z}_l^d-extension (for some prime l\neq p) and E/F a non-isotrivial elliptic curve. We study the behaviour of the r-parts of the Selmer groups ( r any prime) in the subextensions of \mathcal{F} via appropriate versions of Mazur's Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of \mathcal{F}/F.File | Dimensione | Formato | |
---|---|---|---|
AnnFourier2009.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
774.42 kB
Formato
Adobe PDF
|
774.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.