Abstract To investigate whether bradykinin (BK) participates in the inhibition of renal effects of exogenous angiotensin II (AngII) by AngII type 1 receptor (AT1R) blockade, eight salt-repleted volunteers underwent four p-aminohippurate- and inulin-based renal studies of AngII infusion at increasing rates of 0.625, 1.25, and 2.5 ngkgmin1 for 30 min. Studies 1 and 2 were preceded by 3 days of placebo, whereas studies 3 and 4 used 240 to 320 mgday1 valsartan. Bradykinin B2-type receptor (BKB2R) antagonist icatibant (50 gkg1) was coinfused in studies 2 and 4. Mean blood pressure (MBP), glomerular filtration rate (GFR), renal blood flow (RBF), and renal sodium excretion (UNaV) were measured. In study 1, MBP rose by 12.8%, UNaV decreased by 68%, and GFR and RBF also fell (p 0.001 for all). In study 2, GFR and RBF fell as in study 1, but the rise in MBP and the fall in UNaV were accentuated [20.0%, analysis of variance (ANOVA), p 0.02 versus study 1 and 80.0%, p 0.05, respectively]. In study 3, AngII had no effects, and in study 4, renal hemodynamics remained unaffected, but MBP still rose and UNaV fell (ANOVA, p 0.02 and 0.005 versus study 3, respectively). Icatibant accentuated AngII-induced changes in MBP and UNaV. Previous AT1R blockade prevented any systemic and renal effects of AngII, but significant changes in MBP and UNaV still followed AngII plus icatibant even after AT1R blockade. BK, through BKB2Rs, participates in the inhibitory action of AT1R blockers toward actions of exogenous AngII on MBP and UNaV in healthy humans.
Contribution of Bradykinin B2 Receptors to the Inhibition by Valsartan of Systemic and Renal Effects of Exogenous Angiotensin II in Salt Repleted Humans / Biggi, Almerina; Musiari, Luisa; M., Iori; G., De Iaco; G., Magnani; I., Pelloni; S., Pinelli; Pela', Giovanna Maria; A., Novarini; Cabassi, Aderville; Montanari, Alberto. - In: THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS. - ISSN 0022-3565. - 334:(2010), pp. 911-916. [10.1124/jpet.110.166942]
Contribution of Bradykinin B2 Receptors to the Inhibition by Valsartan of Systemic and Renal Effects of Exogenous Angiotensin II in Salt Repleted Humans
BIGGI, Almerina;MUSIARI, Luisa;PELA', Giovanna Maria;CABASSI, Aderville;MONTANARI, Alberto
2010-01-01
Abstract
Abstract To investigate whether bradykinin (BK) participates in the inhibition of renal effects of exogenous angiotensin II (AngII) by AngII type 1 receptor (AT1R) blockade, eight salt-repleted volunteers underwent four p-aminohippurate- and inulin-based renal studies of AngII infusion at increasing rates of 0.625, 1.25, and 2.5 ngkgmin1 for 30 min. Studies 1 and 2 were preceded by 3 days of placebo, whereas studies 3 and 4 used 240 to 320 mgday1 valsartan. Bradykinin B2-type receptor (BKB2R) antagonist icatibant (50 gkg1) was coinfused in studies 2 and 4. Mean blood pressure (MBP), glomerular filtration rate (GFR), renal blood flow (RBF), and renal sodium excretion (UNaV) were measured. In study 1, MBP rose by 12.8%, UNaV decreased by 68%, and GFR and RBF also fell (p 0.001 for all). In study 2, GFR and RBF fell as in study 1, but the rise in MBP and the fall in UNaV were accentuated [20.0%, analysis of variance (ANOVA), p 0.02 versus study 1 and 80.0%, p 0.05, respectively]. In study 3, AngII had no effects, and in study 4, renal hemodynamics remained unaffected, but MBP still rose and UNaV fell (ANOVA, p 0.02 and 0.005 versus study 3, respectively). Icatibant accentuated AngII-induced changes in MBP and UNaV. Previous AT1R blockade prevented any systemic and renal effects of AngII, but significant changes in MBP and UNaV still followed AngII plus icatibant even after AT1R blockade. BK, through BKB2Rs, participates in the inhibitory action of AT1R blockers toward actions of exogenous AngII on MBP and UNaV in healthy humans.File | Dimensione | Formato | |
---|---|---|---|
911.full.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
212.43 kB
Formato
Adobe PDF
|
212.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.