We have performed extensive zero-field µSR experiments on pure YBa2Cu3O6+y and diluted Y-rare-earth substituted Y0.92Eu0.08Ba2Cu3O6+y and Y0.925Nd0.075Ba2Cu3O6+y at light hole doping. A common magnetic behavior is detected for all the three families, demonstrating negligible effects of the isovalent Y-substituent disorder. Two distinct regimes are identified, separated by a crossover, whose origin is attributed to the concurrent thermal activation of spin and charge degrees of freedom: a thermally activated and a re-entrant antiferromagnetic regime. The peculiar temperature and hole density dependence of the magnetic moment m(h,T) fit a model with a (spin) activation energy for the crossover between the two regimes throughout the entire investigated range. The magnetic moment is suppressed by a simple dilution mechanism both in the re-entrant regime (0<=h<=0.056) and in the so-called cluster spin glass state coexisting with superconductivity (0.056< h <= 0.08). We argue a common magnetic ground state for these two doping regions and dub it frozen antiferromagnet. Conversely either frustration or finite-size effects prevail in the thermally activated antiferromagnetic state, that vanishes at the same concentration where superconductivity emerges, suggesting the presence of a quantum critical point at hc=0.056(2).
Magnetic states of lightly hole-doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy / F., Coneri; S., Sanna; K., Zheng; J., Lord; DE RENZI, Roberto. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 81:(2010), pp. 104507-1-104507-11. [10.1103/PhysRevB.81.104507]
Magnetic states of lightly hole-doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy
DE RENZI, Roberto
2010-01-01
Abstract
We have performed extensive zero-field µSR experiments on pure YBa2Cu3O6+y and diluted Y-rare-earth substituted Y0.92Eu0.08Ba2Cu3O6+y and Y0.925Nd0.075Ba2Cu3O6+y at light hole doping. A common magnetic behavior is detected for all the three families, demonstrating negligible effects of the isovalent Y-substituent disorder. Two distinct regimes are identified, separated by a crossover, whose origin is attributed to the concurrent thermal activation of spin and charge degrees of freedom: a thermally activated and a re-entrant antiferromagnetic regime. The peculiar temperature and hole density dependence of the magnetic moment m(h,T) fit a model with a (spin) activation energy for the crossover between the two regimes throughout the entire investigated range. The magnetic moment is suppressed by a simple dilution mechanism both in the re-entrant regime (0<=h<=0.056) and in the so-called cluster spin glass state coexisting with superconductivity (0.056< h <= 0.08). We argue a common magnetic ground state for these two doping regions and dub it frozen antiferromagnet. Conversely either frustration or finite-size effects prevail in the thermally activated antiferromagnetic state, that vanishes at the same concentration where superconductivity emerges, suggesting the presence of a quantum critical point at hc=0.056(2).File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.81.104507-Coneri-YBCO6+x.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
813.05 kB
Formato
Adobe PDF
|
813.05 kB | Adobe PDF | Visualizza/Apri |
AbstractPhysRevB.81.104507.html
accesso aperto
Tipologia:
Abstract
Licenza:
Creative commons
Dimensione
2.22 kB
Formato
HTML
|
2.22 kB | HTML | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.