The aims of the present study were (1) to evaluate whether individual aldehydes resulting from lipid peroxidation can be measured in exhaled breath condensate, (2) to assess the influence of sampling procedures on aldehyde concentrations, and (3) to compare aldehyde levels of patients with stable, moderate to severe, chronic obstructive pulmonary disease with those of smoking and nonsmoking control subjects. Aldehydes (malondialdehyde, hexanal, heptanal, and nonanal) were measured by liquid chromatography-tandem mass spectrometry in all samples and overlapping results were obtained by different sampling procedures. Malondialdehyde (57.2 +/- 2.4 nmol/L), hexanal (63.5 +/- 4.4 nmol/L), and heptanal (26.6 +/- 3.9 nmol/L) were increased in patients as compared with nonsmoking control subjects (17.7 +/- 5.5 nmol/L, p < 0.0001; 14.2 +/- 3.5 nmol/L, p = 0.004; and 18.7 +/- 0.9 nmol/L, p = 0.002, respectively). Only malondialdehyde was increased in patients compared with smoking control subjects (35.6 +/- 4.0 nmol/L, p = 0.0007). In conclusion, different classes of aldehydes were identified in exhaled breath condensate of humans. Whereas all aldehydes but nonanal were lower in control subjects as compared with other groups, only malondialdehyde distinguished smoking control subjects from patients with chronic obstructive pulmonary disease and could be envisaged as a biomarker potentially useful to monitor the disease and its response to therapy.
Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease / Corradi, Massimo; I., Rubinstein; Andreoli, Roberta; P., Manini; A., Caglieri; Poli, Diana; Alinovi, Rossella; Mutti, Antonio. - In: AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE. - ISSN 1073-449X. - 167:(2003), pp. 1380-1386. [10.1164/rccm.200210-1253OC]
Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease.
CORRADI, Massimo;ANDREOLI, Roberta;POLI, Diana;ALINOVI, Rossella;MUTTI, Antonio
2003-01-01
Abstract
The aims of the present study were (1) to evaluate whether individual aldehydes resulting from lipid peroxidation can be measured in exhaled breath condensate, (2) to assess the influence of sampling procedures on aldehyde concentrations, and (3) to compare aldehyde levels of patients with stable, moderate to severe, chronic obstructive pulmonary disease with those of smoking and nonsmoking control subjects. Aldehydes (malondialdehyde, hexanal, heptanal, and nonanal) were measured by liquid chromatography-tandem mass spectrometry in all samples and overlapping results were obtained by different sampling procedures. Malondialdehyde (57.2 +/- 2.4 nmol/L), hexanal (63.5 +/- 4.4 nmol/L), and heptanal (26.6 +/- 3.9 nmol/L) were increased in patients as compared with nonsmoking control subjects (17.7 +/- 5.5 nmol/L, p < 0.0001; 14.2 +/- 3.5 nmol/L, p = 0.004; and 18.7 +/- 0.9 nmol/L, p = 0.002, respectively). Only malondialdehyde was increased in patients compared with smoking control subjects (35.6 +/- 4.0 nmol/L, p = 0.0007). In conclusion, different classes of aldehydes were identified in exhaled breath condensate of humans. Whereas all aldehydes but nonanal were lower in control subjects as compared with other groups, only malondialdehyde distinguished smoking control subjects from patients with chronic obstructive pulmonary disease and could be envisaged as a biomarker potentially useful to monitor the disease and its response to therapy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.