The local motion of a null curve in Minkowski 3-space induces an evolution equation for its Lorentz invariant curvature. Special motions are constructed whose induced evolution equations are the members of the Korteweg-de Vries (KdV) hierarchy. The null curves which move under the KdV flow without changing shape are proven to be the trajectories of a certain particle model on null curves described by a Lagrangian linear in the curvature. In addition, we show that the curvature of a null curve which evolves by similarities can be computed in terms of the solutions of the second Painleve equation.

Hamiltonian flows on null curves / E., Musso; Nicolodi, Lorenzo. - In: NONLINEARITY. - ISSN 0951-7715. - 23:(2010), pp. 2117-2129. [10.1088/0951-7715/23/9/005]

Hamiltonian flows on null curves

NICOLODI, Lorenzo
2010-01-01

Abstract

The local motion of a null curve in Minkowski 3-space induces an evolution equation for its Lorentz invariant curvature. Special motions are constructed whose induced evolution equations are the members of the Korteweg-de Vries (KdV) hierarchy. The null curves which move under the KdV flow without changing shape are proven to be the trajectories of a certain particle model on null curves described by a Lagrangian linear in the curvature. In addition, we show that the curvature of a null curve which evolves by similarities can be computed in terms of the solutions of the second Painleve equation.
2010
Hamiltonian flows on null curves / E., Musso; Nicolodi, Lorenzo. - In: NONLINEARITY. - ISSN 0951-7715. - 23:(2010), pp. 2117-2129. [10.1088/0951-7715/23/9/005]
File in questo prodotto:
File Dimensione Formato  
nonlinearity23-2010.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 171.95 kB
Formato Adobe PDF
171.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2313181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact