Abstract of “Asymptotic behavior of relaxed Dirichlet problems related to p-homogeneous strongly local forms” We study the asymptotic behavior of the solutions to a relaxed Dirichlet problem associated with p-homogeneous strongly local forms, $p>1$, having a local $L^1$ density and to measures $\zeta_n$, which do not charge sets of zero capacity. We prove that there exists a subsequence of $\zeta_n$ that $\gamma$-converges to a measure $\zeta$ of the same type, and we also prove the convergence of the relative solutions in $D^r [\Omega]$, $1<r<p$.

Asymptotic behavior of relaxed Dirichlet problems related to p-homogeneous strongly local forms / M. Biroli ; S. Marchi. - In: JOURNAL OF MATHEMATICAL SCIENCES: ADVANCES AND APPLICATIONS. - ISSN 0974-5750. - 5 (1)(2010), pp. 39-83.

Asymptotic behavior of relaxed Dirichlet problems related to p-homogeneous strongly local forms

MARCHI, Silvana
2010

Abstract

Abstract of “Asymptotic behavior of relaxed Dirichlet problems related to p-homogeneous strongly local forms” We study the asymptotic behavior of the solutions to a relaxed Dirichlet problem associated with p-homogeneous strongly local forms, $p>1$, having a local $L^1$ density and to measures $\zeta_n$, which do not charge sets of zero capacity. We prove that there exists a subsequence of $\zeta_n$ that $\gamma$-converges to a measure $\zeta$ of the same type, and we also prove the convergence of the relative solutions in $D^r [\Omega]$, $1
Asymptotic behavior of relaxed Dirichlet problems related to p-homogeneous strongly local forms / M. Biroli ; S. Marchi. - In: JOURNAL OF MATHEMATICAL SCIENCES: ADVANCES AND APPLICATIONS. - ISSN 0974-5750. - 5 (1)(2010), pp. 39-83.
File in questo prodotto:
File Dimensione Formato  
Abs.Asymptotic(2010)JMSAA.pdf

non disponibili

Tipologia: Abstract
Licenza: Creative commons
Dimensione 36.84 kB
Formato Adobe PDF
36.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
[5] JMSAA 030309 Marco Biroli and Silvana Marchi [39-83].pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 375.75 kB
Formato Adobe PDF
375.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2312735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact