On a compact complex manifold we study the behaviour of strong Kähler with torsion (strong KT) structures under small deformations of the complex structure and the problem of extension of a strong KT metric. In this context we obtain the analogous result of Miyaoka extension theorem. Studying the blow- up of a strong KT manifold at a point or along a complex submanifold, we prove that a complex orbifold endowed with a strong KT metric admits a strong KT resolution. In this way we obtain new examples of compact simply-connected strong KT manifolds.

Blow-ups and resolutions of strong Kaehler with torsion metrics / A., Fino; Tomassini, Adriano. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 221:(2009), pp. 914-935. [10.1016/j.aim.2009.02.001]

Blow-ups and resolutions of strong Kaehler with torsion metrics

TOMASSINI, Adriano
2009-01-01

Abstract

On a compact complex manifold we study the behaviour of strong Kähler with torsion (strong KT) structures under small deformations of the complex structure and the problem of extension of a strong KT metric. In this context we obtain the analogous result of Miyaoka extension theorem. Studying the blow- up of a strong KT manifold at a point or along a complex submanifold, we prove that a complex orbifold endowed with a strong KT metric admits a strong KT resolution. In this way we obtain new examples of compact simply-connected strong KT manifolds.
2009
Blow-ups and resolutions of strong Kaehler with torsion metrics / A., Fino; Tomassini, Adriano. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 221:(2009), pp. 914-935. [10.1016/j.aim.2009.02.001]
File in questo prodotto:
File Dimensione Formato  
abstract-AIM-2009.pdf

non disponibili

Tipologia: Abstract
Licenza: Creative commons
Dimensione 26.54 kB
Formato Adobe PDF
26.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
AIM 2009.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 210.35 kB
Formato Adobe PDF
210.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2307590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact