Abstract We study a special type of almost complex structures, called pure and full and introduced by T.J. Li and W. Zhang (arXiv:0708.2520, 2007), in relation to sym- plectic structures and Hard Lefschetz condition. We provide sufficient conditions to the existence of the above type of almost complex structures on compact quotients of Lie groups by discrete subgroups. We obtain families of pure and full almost com- plex structures on compact nilmanifolds and solvmanifolds. Some of these families are parametrized by real 2-forms which are anti-invariant with respect to the almost complex structures.

On some cohomological properties of almost complex manifolds / A., Fino; Tomassini, Adriano. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 20:(2010), pp. 107-131. [10.1007/s12220-009-9098-3]

On some cohomological properties of almost complex manifolds

TOMASSINI, Adriano
2010-01-01

Abstract

Abstract We study a special type of almost complex structures, called pure and full and introduced by T.J. Li and W. Zhang (arXiv:0708.2520, 2007), in relation to sym- plectic structures and Hard Lefschetz condition. We provide sufficient conditions to the existence of the above type of almost complex structures on compact quotients of Lie groups by discrete subgroups. We obtain families of pure and full almost com- plex structures on compact nilmanifolds and solvmanifolds. Some of these families are parametrized by real 2-forms which are anti-invariant with respect to the almost complex structures.
On some cohomological properties of almost complex manifolds / A., Fino; Tomassini, Adriano. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 20:(2010), pp. 107-131. [10.1007/s12220-009-9098-3]
File in questo prodotto:
File Dimensione Formato  
JGA-2010.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 269.58 kB
Formato Adobe PDF
269.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
abstract-JGA-2010.pdf

non disponibili

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 50.78 kB
Formato Adobe PDF
50.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2307548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact