We study a short-interval version of a result due to Montgomery and Hooley. Write $$ S(x,h,Q) = \sum_{q \le Q} \sum_{\substack{a = 1 \\ (a, q) = 1}}^q \left\vert \psi(x + h; q, a) - \psi(x; q, a) - \frac h {\varphi(q)} \right\vert^2 $$ and $\kappa = 1 + \gamma + \log 2\pi + \sum_p (\log p) / p (p - 1)$. Denote the expected main term by $M(x, h, Q) = h Q \log (x Q / h) + (x + h) Q \log(1 + h / x) - \kappa h Q$. Let $\epsilon$, $A > 0$ be arbitrary, $x^{7/12+\epsilon} \le h \le x$ and $Q \le h$. There exists a positive constant $c_1$ such that $$ S(x, h, Q) - M(X, h, Q) \ll h^{1/2} Q^{3/2} \exp \left(-c_1\frac{(\log 2h/Q)^{3/5}}{(\log\log 3h/Q)^{1/5}} \right) + h^2 \log^{-A} x. $$ Now assume \emph{GRH} and let $\epsilon > 0$, $x^{1/2+\epsilon} \le h \le x$ and $Q \le h$. There exists a positive constant $c_2$ such that $$ S(x, h, Q) - M(x, h, Q) \ll \Bigl( \frac hQ \Bigr)^{1/4+\epsilon} Q^2 + h x^{1/2} \log^{c_2} x. $$

On the Montgomery-Hooley theorem in short intervals / A., Languasco; A., Perelli; Zaccagnini, Alessandro. - In: MATHEMATIKA. - ISSN 0025-5793. - 56:2(2010), pp. 231-243. [10.1112/S0025579310000628]

On the Montgomery-Hooley theorem in short intervals

ZACCAGNINI, Alessandro
2010-01-01

Abstract

We study a short-interval version of a result due to Montgomery and Hooley. Write $$ S(x,h,Q) = \sum_{q \le Q} \sum_{\substack{a = 1 \\ (a, q) = 1}}^q \left\vert \psi(x + h; q, a) - \psi(x; q, a) - \frac h {\varphi(q)} \right\vert^2 $$ and $\kappa = 1 + \gamma + \log 2\pi + \sum_p (\log p) / p (p - 1)$. Denote the expected main term by $M(x, h, Q) = h Q \log (x Q / h) + (x + h) Q \log(1 + h / x) - \kappa h Q$. Let $\epsilon$, $A > 0$ be arbitrary, $x^{7/12+\epsilon} \le h \le x$ and $Q \le h$. There exists a positive constant $c_1$ such that $$ S(x, h, Q) - M(X, h, Q) \ll h^{1/2} Q^{3/2} \exp \left(-c_1\frac{(\log 2h/Q)^{3/5}}{(\log\log 3h/Q)^{1/5}} \right) + h^2 \log^{-A} x. $$ Now assume \emph{GRH} and let $\epsilon > 0$, $x^{1/2+\epsilon} \le h \le x$ and $Q \le h$. There exists a positive constant $c_2$ such that $$ S(x, h, Q) - M(x, h, Q) \ll \Bigl( \frac hQ \Bigr)^{1/4+\epsilon} Q^2 + h x^{1/2} \log^{c_2} x. $$
2010
On the Montgomery-Hooley theorem in short intervals / A., Languasco; A., Perelli; Zaccagnini, Alessandro. - In: MATHEMATIKA. - ISSN 0025-5793. - 56:2(2010), pp. 231-243. [10.1112/S0025579310000628]
File in questo prodotto:
File Dimensione Formato  
Mathematika.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 158.5 kB
Formato Adobe PDF
158.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2306064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact