We consider the solutions of the Cauchy problem for a dyadic model of Euler equations. We prove global existence and uniqueness of Leray-Hopf solutions in a rather large class K that implies in particular global existence and uniqueness in l^2 for all initial positive conditions in l^2.
A theorem of uniqueness for an inviscid dyadic model / D., Barbato; F., Flandoli; Morandin, Francesco. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 348:(2010), pp. 525-528. [10.1016/j.crma.2010.03.007]
A theorem of uniqueness for an inviscid dyadic model
MORANDIN, Francesco
2010-01-01
Abstract
We consider the solutions of the Cauchy problem for a dyadic model of Euler equations. We prove global existence and uniqueness of Leray-Hopf solutions in a rather large class K that implies in particular global existence and uniqueness in l^2 for all initial positive conditions in l^2.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CRASS14343.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
319.82 kB
Formato
Adobe PDF
|
319.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.