Let A be an elliptic operator with unbounded and sufficiently smooth coefficients and let μ be a (sub)-invariant measure of the operator A. In this paper we give sufficient conditions guaranteeing that the closure of the operator (A,C^∞_c(R^N)) generates a sub-Markovian strongly continuous semigroup of contractions in Lp(R^N,μ). Applications are given in the case when A is a generalized Schrödinger operator.

Lp-uniqueness for elliptic operators with unbounded coefficients in RN / Albanese, A; Lorenzi, Luca Francesco Giuseppe; Mangino, E.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 256:4(2009), pp. 1238-1257. [10.1016/j.jfa.2008.07.022]

Lp-uniqueness for elliptic operators with unbounded coefficients in RN

LORENZI, Luca Francesco Giuseppe;
2009-01-01

Abstract

Let A be an elliptic operator with unbounded and sufficiently smooth coefficients and let μ be a (sub)-invariant measure of the operator A. In this paper we give sufficient conditions guaranteeing that the closure of the operator (A,C^∞_c(R^N)) generates a sub-Markovian strongly continuous semigroup of contractions in Lp(R^N,μ). Applications are given in the case when A is a generalized Schrödinger operator.
2009
Lp-uniqueness for elliptic operators with unbounded coefficients in RN / Albanese, A; Lorenzi, Luca Francesco Giuseppe; Mangino, E.. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 256:4(2009), pp. 1238-1257. [10.1016/j.jfa.2008.07.022]
File in questo prodotto:
File Dimensione Formato  
Lp-uniqueness.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 218.41 kB
Formato Adobe PDF
218.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2294068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact