Thiahelicenes are polycondensed heteroaromatic molecules characterized by a chiral helix-like structure including multiple thiophene units, with a lowering effect on the oxidation potentials and a shrinking effect on the band gaps. As a consequence they can be regarded as electrochemically and optically active conducting materials, exhibiting interesting properties under electrical or magnetic polarization, and are under study for non-linear optics (NLO) applications. The present extensive investigation on 11 thiahelicenes with different chain length and functionalization (including the first example of a thiahelicene with perfluorinated alkyl chains) together with the precursor benzodithiophene provides a deep insight on the structure vs. electrochemical activity relationship within this attractive compound class, focusing on both electron transfer (ET) properties and oligomerization ability (hinging on free positions on terminal thiophene groups).
Electrochemical activity of thiahelicenes: Structure effects and electrooligomerization ability / Bossi, Alberto; Falciola, Luigi; Graiff, Claudia; Maiorana, Stefano; Rigamonti, Clara; Tiripicchio, Antonio; Licandro, Emanuela; MUSSINI PATRIZIA, Romana. - In: ELECTROCHIMICA ACTA. - ISSN 0013-4686. - 54:(2009), pp. 5083-5097. [10.1016/j.electacta.2009.02.026]
Electrochemical activity of thiahelicenes: Structure effects and electrooligomerization ability
GRAIFF, Claudia;TIRIPICCHIO, Antonio;
2009-01-01
Abstract
Thiahelicenes are polycondensed heteroaromatic molecules characterized by a chiral helix-like structure including multiple thiophene units, with a lowering effect on the oxidation potentials and a shrinking effect on the band gaps. As a consequence they can be regarded as electrochemically and optically active conducting materials, exhibiting interesting properties under electrical or magnetic polarization, and are under study for non-linear optics (NLO) applications. The present extensive investigation on 11 thiahelicenes with different chain length and functionalization (including the first example of a thiahelicene with perfluorinated alkyl chains) together with the precursor benzodithiophene provides a deep insight on the structure vs. electrochemical activity relationship within this attractive compound class, focusing on both electron transfer (ET) properties and oligomerization ability (hinging on free positions on terminal thiophene groups).File | Dimensione | Formato | |
---|---|---|---|
reprints1 Electrochimica Acta 2009 MAIO.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.