A series of 6-amino-4-oxo-1,3-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonyl derivatives was synthesized. The compounds demonstrated to be novel, potent and selective inhibitors of Interleukin-8-induced human neutrophil chemotaxis. A SAR study was performed by varying the carbonyl function at position 5 and the chain linked to the amino group at position 6 of the scaffold. All the compounds of the series displayed inhibitory activity at nano- or picomolar concentrations against Interleukin-8-driven migration and no activity against fMLP- and C5a-induced chemotaxis. The binding tests of selected compounds on CXCR1 and CXCR2 receptors were negative. The most potent derivative showed in vivo efficacy in a mouse model of Zymosan-induced peritonitis
6-amino-4-oxo-1,3-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonyl derivatives as a new class of potent inhibitors of Interleukin-8-induced neutrophil chemotaxis / Cesarini, S; Spallarossa, A; Ranise, A; Bruno, O; Arduino, N; Bertolotto, M; Dallegri, F; Tognolini, Massimiliano; Gobbetti, Thomas; Barocelli, Elisabetta. - In: BIOORGANIC & MEDICINAL CHEMISTRY. - ISSN 0968-0896. - 17:(2009), pp. 3580-3587. [10.1016/j.bmc.2009.04.006]
6-amino-4-oxo-1,3-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonyl derivatives as a new class of potent inhibitors of Interleukin-8-induced neutrophil chemotaxis.
TOGNOLINI, Massimiliano;GOBBETTI, Thomas;BAROCELLI, Elisabetta
2009-01-01
Abstract
A series of 6-amino-4-oxo-1,3-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonyl derivatives was synthesized. The compounds demonstrated to be novel, potent and selective inhibitors of Interleukin-8-induced human neutrophil chemotaxis. A SAR study was performed by varying the carbonyl function at position 5 and the chain linked to the amino group at position 6 of the scaffold. All the compounds of the series displayed inhibitory activity at nano- or picomolar concentrations against Interleukin-8-driven migration and no activity against fMLP- and C5a-induced chemotaxis. The binding tests of selected compounds on CXCR1 and CXCR2 receptors were negative. The most potent derivative showed in vivo efficacy in a mouse model of Zymosan-induced peritonitisFile | Dimensione | Formato | |
---|---|---|---|
2009 Bioorg med chem CESARINI.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.