We state a Wiener criterion for regular points of a relaxed Dirichlet problem relative to a p-homogeneous, strongly local, Riemannian Dirichlet form (with a source which is a Kato measure). The interest of the relaxed Dirichlet problems is twofold: (1) From the Wiener criterion for relaxed Dirichlet problems, a Wiener criterion for regular points at the boundary follows. (2) The class of relaxed Dirichlet problems results closed for $\Gamma$-convergence.

Harnack inequality for harmonic functions relative to a nonlinear p-homogeneous Riemannian Dirichlet form / Biroli, M; Marchi, Silvana. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 71:(2009), pp. E436-E444. [10.1016/j.na.2008.11.076]

Harnack inequality for harmonic functions relative to a nonlinear p-homogeneous Riemannian Dirichlet form

MARCHI, Silvana
2009-01-01

Abstract

We state a Wiener criterion for regular points of a relaxed Dirichlet problem relative to a p-homogeneous, strongly local, Riemannian Dirichlet form (with a source which is a Kato measure). The interest of the relaxed Dirichlet problems is twofold: (1) From the Wiener criterion for relaxed Dirichlet problems, a Wiener criterion for regular points at the boundary follows. (2) The class of relaxed Dirichlet problems results closed for $\Gamma$-convergence.
2009
Harnack inequality for harmonic functions relative to a nonlinear p-homogeneous Riemannian Dirichlet form / Biroli, M; Marchi, Silvana. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 71:(2009), pp. E436-E444. [10.1016/j.na.2008.11.076]
File in questo prodotto:
File Dimensione Formato  
BIROLI MARCHI Nonlinear analysis.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 551.95 kB
Formato Adobe PDF
551.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2292204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact