We prove some extension theorems for analytic objects, in particular sections of a coherent sheaf, defined in semi q-coronae of a complex space. Semi q-coronae are domains whose boundary is the union of a Levi flat part, a q-pseudoconvex part and a q-pseudoconcave part. Such results are obtained mainly using cohomological techniques.

Cohomology and extension problems for semi q-coronae / Saracco, Alberto; Tomassini, Giuseppe. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 256:(2007), pp. 737-748. [10.1007/s00209-006-0097-9]

Cohomology and extension problems for semi q-coronae

SARACCO, Alberto;
2007-01-01

Abstract

We prove some extension theorems for analytic objects, in particular sections of a coherent sheaf, defined in semi q-coronae of a complex space. Semi q-coronae are domains whose boundary is the union of a Levi flat part, a q-pseudoconvex part and a q-pseudoconcave part. Such results are obtained mainly using cohomological techniques.
2007
Cohomology and extension problems for semi q-coronae / Saracco, Alberto; Tomassini, Giuseppe. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 256:(2007), pp. 737-748. [10.1007/s00209-006-0097-9]
File in questo prodotto:
File Dimensione Formato  
q-coronaeMathZ07.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 236.87 kB
Formato Adobe PDF
236.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2292156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact