Aphysicalmodelisreviewedwhichexplainsdifferentaspectsofproteindynam- ics consistently. At low temperatures, the molecules are frozen in conformational substates. Their average energy is 3/2RT. Solid-state vibrations occur on a time scale of femtoseconds to nanoseconds. Above a characteristic temperature, often called the dynamical transition temperature, slow modes of motions can be observed occurring on a time scale between about 140 and 1 ns. These motions are overdamped, quasidiffusive, and involve collective motions of segments of the size of an α-helix. Molecules performing these types of motion are in the “flexible state”. This state is reached by thermal activation. It is shown that these motions are essential for conformational relaxation. Based on this picture, a new approach is proposed to understand conformational changes. It connects structural fluctuations and conformational transitions.
A Physical Picture of Protein Dynamics and Conformational Changes / FRITZ G., Parak; Klaus, Achterhold; Croci, Simonetta; Marius, Schmidts. - In: JOURNAL OF BIOLOGICAL PHYSICS. - ISSN 0092-0606. - 33:(2007), pp. 371-387. [10.1007/s10867-008-9102-3]
A Physical Picture of Protein Dynamics and Conformational Changes
CROCI, Simonetta;
2007-01-01
Abstract
Aphysicalmodelisreviewedwhichexplainsdifferentaspectsofproteindynam- ics consistently. At low temperatures, the molecules are frozen in conformational substates. Their average energy is 3/2RT. Solid-state vibrations occur on a time scale of femtoseconds to nanoseconds. Above a characteristic temperature, often called the dynamical transition temperature, slow modes of motions can be observed occurring on a time scale between about 140 and 1 ns. These motions are overdamped, quasidiffusive, and involve collective motions of segments of the size of an α-helix. Molecules performing these types of motion are in the “flexible state”. This state is reached by thermal activation. It is shown that these motions are essential for conformational relaxation. Based on this picture, a new approach is proposed to understand conformational changes. It connects structural fluctuations and conformational transitions.File | Dimensione | Formato | |
---|---|---|---|
A Physical_abstract.pdf
non disponibili
Tipologia:
Abstract
Licenza:
Creative commons
Dimensione
58.47 kB
Formato
Adobe PDF
|
58.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Croci_JBP_2007.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
784.25 kB
Formato
Adobe PDF
|
784.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.