In this paper we study the lower semicontinuous envelope with respect to the L^1-topology of a class of isotropic functionals with linear growth defined on mappings from the n-dimensional ball into R^N that are constrained to take values into a smooth submanifold Y of R^N.

Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings / MUCCI D.. - In: ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS. - ISSN 1262-3377. - 15:2(2009), pp. 295-321. [10.1051/cocv:2008026]

Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings

MUCCI, Domenico
2009

Abstract

In this paper we study the lower semicontinuous envelope with respect to the L^1-topology of a class of isotropic functionals with linear growth defined on mappings from the n-dimensional ball into R^N that are constrained to take values into a smooth submanifold Y of R^N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2287644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact