OBJECTIVE: Podocyte-specific, doxycycline (DOX)-inducible overexpression of soluble vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1) in adult mice was used to investigate the role of the VEGF-A/VEGF receptor (VEGFR) system in diabetic glomerulopathy. RESEARCH DESIGN AND METHODS: We studied nondiabetic and diabetic transgenic mice and wild-type controls treated with vehicle (VEH) or DOX for 10 weeks. Glycemia was measured by a glucose-oxidase method and blood pressure by a noninvasive technique. sFlt-1, VEGF-A, VEGFR2, and nephrin protein expression in renal cortex were determined by Western immunoblotting; urine sFlt-1, urine free VEGF-A, and albuminuria by enzyme-linked immunosorbent assay; glomerular ultrastructure by electron microscopy; and VEGFR1 and VEGFR2 cellular localization with Immunogold techniques. RESULTS: Nondiabetic DOX-treated transgenic mice showed a twofold increase in cortex sFlt-1 expression and a fourfold increase in sFlt-1 urine excretion (P < 0.001). Urine free VEGF-A was decreased by 50%, and cortex VEGF-A expression was upregulated by 30% (P < 0.04). VEGFR2 expression was unchanged, whereas its activation was reduced in DOX-treated transgenic mice (P < 0.02). Albuminuria and glomerular morphology were similar among groups. DOX-treated transgenic diabetic mice showed a 60% increase in 24-h urine sFlt-1 excretion and an approximately 70% decrease in urine free VEGF-A compared with VEH-treated diabetic mice (P < 0.04) and had lower urine albumin excretion at 10 weeks than VEH-treated diabetic (d) mice: d-VEH vs. d-DOX, geometric mean (95% CI), 117.5 (69-199) vs. 43 (26.8-69) mug/24 h (P = 0.003). Diabetes-induced mesangial expansion, glomerular basement membrane thickening, podocyte foot-process fusion, and transforming growth factor-beta1 expression were ameliorated in DOX-treated diabetic animals (P < 0.05). Diabetes-induced VEGF-A and nephrin expression were not affected in DOX-treated mice. CONCLUSIONS: Podocyte-specific sFlt-1 overexpression ameliorates diabetic glomerular injury, implicating VEGF-A in the pathogenesis of this complication.

Inducible Overexpression of sFlt-1 in Podocytes Ameliorates Glomerulopathy in Diabetic Mice / Ku, Ch; White, Ke; DEI CAS, Alessandra; Hayward, A; Zoe, W; Bilous, R; Marshall, S; Viberti, G; Gnudi, L.. - In: DIABETES. - ISSN 0012-1797. - 57(10):(2008), pp. 2824-2833. [10.2337/db08-0647]

Inducible Overexpression of sFlt-1 in Podocytes Ameliorates Glomerulopathy in Diabetic Mice

DEI CAS, Alessandra;
2008-01-01

Abstract

OBJECTIVE: Podocyte-specific, doxycycline (DOX)-inducible overexpression of soluble vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1) in adult mice was used to investigate the role of the VEGF-A/VEGF receptor (VEGFR) system in diabetic glomerulopathy. RESEARCH DESIGN AND METHODS: We studied nondiabetic and diabetic transgenic mice and wild-type controls treated with vehicle (VEH) or DOX for 10 weeks. Glycemia was measured by a glucose-oxidase method and blood pressure by a noninvasive technique. sFlt-1, VEGF-A, VEGFR2, and nephrin protein expression in renal cortex were determined by Western immunoblotting; urine sFlt-1, urine free VEGF-A, and albuminuria by enzyme-linked immunosorbent assay; glomerular ultrastructure by electron microscopy; and VEGFR1 and VEGFR2 cellular localization with Immunogold techniques. RESULTS: Nondiabetic DOX-treated transgenic mice showed a twofold increase in cortex sFlt-1 expression and a fourfold increase in sFlt-1 urine excretion (P < 0.001). Urine free VEGF-A was decreased by 50%, and cortex VEGF-A expression was upregulated by 30% (P < 0.04). VEGFR2 expression was unchanged, whereas its activation was reduced in DOX-treated transgenic mice (P < 0.02). Albuminuria and glomerular morphology were similar among groups. DOX-treated transgenic diabetic mice showed a 60% increase in 24-h urine sFlt-1 excretion and an approximately 70% decrease in urine free VEGF-A compared with VEH-treated diabetic mice (P < 0.04) and had lower urine albumin excretion at 10 weeks than VEH-treated diabetic (d) mice: d-VEH vs. d-DOX, geometric mean (95% CI), 117.5 (69-199) vs. 43 (26.8-69) mug/24 h (P = 0.003). Diabetes-induced mesangial expansion, glomerular basement membrane thickening, podocyte foot-process fusion, and transforming growth factor-beta1 expression were ameliorated in DOX-treated diabetic animals (P < 0.05). Diabetes-induced VEGF-A and nephrin expression were not affected in DOX-treated mice. CONCLUSIONS: Podocyte-specific sFlt-1 overexpression ameliorates diabetic glomerular injury, implicating VEGF-A in the pathogenesis of this complication.
2008
Inducible Overexpression of sFlt-1 in Podocytes Ameliorates Glomerulopathy in Diabetic Mice / Ku, Ch; White, Ke; DEI CAS, Alessandra; Hayward, A; Zoe, W; Bilous, R; Marshall, S; Viberti, G; Gnudi, L.. - In: DIABETES. - ISSN 0012-1797. - 57(10):(2008), pp. 2824-2833. [10.2337/db08-0647]
File in questo prodotto:
File Dimensione Formato  
inducible.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 645.36 kB
Formato Adobe PDF
645.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1911692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 89
social impact