We study the asymptotic behavior of the probability of generating a finite completely reducible linear group $G$ of degree $n$ with $[\beta n]$ elements. In particular we prove that if $\beta \geq 3/2$ and $n$ is large enough then $[\beta n]$ randomly chosen elements that generate $G$ modulo $\oo(G)$ almost certainly generate $G$ itself.

THE PROBABILITY OF GENERATING A FINITE LINEAR GROUP / Lucchini, A; Morini, Fiorenza. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 83:(2004), pp. 394-403. [10.1007/s00013-004-1154-4]

THE PROBABILITY OF GENERATING A FINITE LINEAR GROUP

MORINI, Fiorenza
2004-01-01

Abstract

We study the asymptotic behavior of the probability of generating a finite completely reducible linear group $G$ of degree $n$ with $[\beta n]$ elements. In particular we prove that if $\beta \geq 3/2$ and $n$ is large enough then $[\beta n]$ randomly chosen elements that generate $G$ modulo $\oo(G)$ almost certainly generate $G$ itself.
2004
THE PROBABILITY OF GENERATING A FINITE LINEAR GROUP / Lucchini, A; Morini, Fiorenza. - In: ARCHIV DER MATHEMATIK. - ISSN 0003-889X. - 83:(2004), pp. 394-403. [10.1007/s00013-004-1154-4]
File in questo prodotto:
File Dimensione Formato  
ARCHIV LINEAR.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 120.96 kB
Formato Adobe PDF
120.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1894784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact