In the factorial ring of Dirichlet polynomials we explore the connections between how the Dirichlet polynomial $P_G(s)$ associated with a finite group $G$ factorizes and the structure of G. If $P_G(s)$ is irreducible, then $G/FratG$ is simple. We investigate whether the converse is true, studying the factorization in the case of some simple groups. For any prime $p\geq 5$ we show that if $P_G(s) = P_{Alt(p)}(s)$, then $G/FratG \cong Alt(p)$ and $P_{Alt(p)}(s)$ is irreducible. Moreover, if $P_G(s) = P_{PSL(2,p)}(s)$, then $G/FratG$ is simple, but $P_{PSL(2,p)}(s)$ is reducible whenever $p = 2^t- 1$ and $t = 3 mod 4$.

SOME PROPERTIES ON THE PROBABILISTIC ZETA FUNCTION OF FINITE SIMPLE GROUPS / Damian, E; Lucchini, A; Morini, Fiorenza. - In: PACIFIC JOURNAL OF MATHEMATICS. - ISSN 0030-8730. - 215:(2004), pp. 3-14.

SOME PROPERTIES ON THE PROBABILISTIC ZETA FUNCTION OF FINITE SIMPLE GROUPS

MORINI, Fiorenza
2004-01-01

Abstract

In the factorial ring of Dirichlet polynomials we explore the connections between how the Dirichlet polynomial $P_G(s)$ associated with a finite group $G$ factorizes and the structure of G. If $P_G(s)$ is irreducible, then $G/FratG$ is simple. We investigate whether the converse is true, studying the factorization in the case of some simple groups. For any prime $p\geq 5$ we show that if $P_G(s) = P_{Alt(p)}(s)$, then $G/FratG \cong Alt(p)$ and $P_{Alt(p)}(s)$ is irreducible. Moreover, if $P_G(s) = P_{PSL(2,p)}(s)$, then $G/FratG$ is simple, but $P_{PSL(2,p)}(s)$ is reducible whenever $p = 2^t- 1$ and $t = 3 mod 4$.
2004
SOME PROPERTIES ON THE PROBABILISTIC ZETA FUNCTION OF FINITE SIMPLE GROUPS / Damian, E; Lucchini, A; Morini, Fiorenza. - In: PACIFIC JOURNAL OF MATHEMATICS. - ISSN 0030-8730. - 215:(2004), pp. 3-14.
File in questo prodotto:
File Dimensione Formato  
1pjm.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 173.7 kB
Formato Adobe PDF
173.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1894781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact