In the factorial ring of Dirichlet polynomials we explore the connections between how the Dirichlet polynomial $P_G(s)$ associated with a finite group $G$ factorizes and the structure of G. If $P_G(s)$ is irreducible, then $G/FratG$ is simple. We investigate whether the converse is true, studying the factorization in the case of some simple groups. For any prime $p\geq 5$ we show that if $P_G(s) = P_{Alt(p)}(s)$, then $G/FratG \cong Alt(p)$ and $P_{Alt(p)}(s)$ is irreducible. Moreover, if $P_G(s) = P_{PSL(2,p)}(s)$, then $G/FratG$ is simple, but $P_{PSL(2,p)}(s)$ is reducible whenever $p = 2^t- 1$ and $t = 3 mod 4$.
SOME PROPERTIES ON THE PROBABILISTIC ZETA FUNCTION OF FINITE SIMPLE GROUPS / Damian, E; Lucchini, A; Morini, Fiorenza. - In: PACIFIC JOURNAL OF MATHEMATICS. - ISSN 0030-8730. - 215:(2004), pp. 3-14.
SOME PROPERTIES ON THE PROBABILISTIC ZETA FUNCTION OF FINITE SIMPLE GROUPS
MORINI, Fiorenza
2004-01-01
Abstract
In the factorial ring of Dirichlet polynomials we explore the connections between how the Dirichlet polynomial $P_G(s)$ associated with a finite group $G$ factorizes and the structure of G. If $P_G(s)$ is irreducible, then $G/FratG$ is simple. We investigate whether the converse is true, studying the factorization in the case of some simple groups. For any prime $p\geq 5$ we show that if $P_G(s) = P_{Alt(p)}(s)$, then $G/FratG \cong Alt(p)$ and $P_{Alt(p)}(s)$ is irreducible. Moreover, if $P_G(s) = P_{PSL(2,p)}(s)$, then $G/FratG$ is simple, but $P_{PSL(2,p)}(s)$ is reducible whenever $p = 2^t- 1$ and $t = 3 mod 4$.File | Dimensione | Formato | |
---|---|---|---|
1pjm.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
173.7 kB
Formato
Adobe PDF
|
173.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.