The solution of a stochastic control problem depends on the underlying model. The actual real world model may not be known precisely and so one solves the problem for a hypothetical model, that is in general different but close to the real one; the optimal (or nearly optimal) control of the hypothetical model is then used as solution for the real problem. In this paper we assume that, what is not precisely known, is the underlying probability measure that determines the distribution of the random quantities driving the model. We investigate two ways to derive a bound on the suboptimality of the optimal control of the hypothetical problem when this control is used in the real problem. Both bounds are in terms of the Radon-Nikodym derivative of the underlying real world measure with respect to the hypothetical one. We finally investigate how the bounds compare to each other.
A Robustness Result for Stochastic Control / Favero, Gino; Runggaldier, W. J.. - In: SYSTEMS & CONTROL LETTERS. - ISSN 0167-6911. - 46:(2002), pp. 91-97. [10.1016/S0167-6911(02)00121-4]
A Robustness Result for Stochastic Control
FAVERO, Gino;
2002-01-01
Abstract
The solution of a stochastic control problem depends on the underlying model. The actual real world model may not be known precisely and so one solves the problem for a hypothetical model, that is in general different but close to the real one; the optimal (or nearly optimal) control of the hypothetical model is then used as solution for the real problem. In this paper we assume that, what is not precisely known, is the underlying probability measure that determines the distribution of the random quantities driving the model. We investigate two ways to derive a bound on the suboptimality of the optimal control of the hypothetical problem when this control is used in the real problem. Both bounds are in terms of the Radon-Nikodym derivative of the underlying real world measure with respect to the hypothetical one. We finally investigate how the bounds compare to each other.File | Dimensione | Formato | |
---|---|---|---|
Robust.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
114.59 kB
Formato
Adobe PDF
|
114.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.