In this paper we study the dependence on the loss function of the strategy, which minimises the expected shortfall risk when dealing with a financial contingent claim in the particular situation of a binomial model. After having characterised the optimal strategies in the particular cases when the loss function is concave, linear or strictly convex, we analyse how optimal strategies change when we approximate a loss function with a sequence of suitable loss functions. The particular case of lower partial moments is considered as an example.

Shortfall risk minimising strategies in the binomial model: characterisation and convergence / Favero, Gino; Vargiolu, T.. - In: MATHEMATICAL METHODS OF OPERATIONS RESEARCH. - ISSN 1432-2994. - 64 (2):(2006), pp. 237-253. [10.1007/s00186-006-0083-3]

Shortfall risk minimising strategies in the binomial model: characterisation and convergence

FAVERO, Gino;
2006-01-01

Abstract

In this paper we study the dependence on the loss function of the strategy, which minimises the expected shortfall risk when dealing with a financial contingent claim in the particular situation of a binomial model. After having characterised the optimal strategies in the particular cases when the loss function is concave, linear or strictly convex, we analyse how optimal strategies change when we approximate a loss function with a sequence of suitable loss functions. The particular case of lower partial moments is considered as an example.
2006
Shortfall risk minimising strategies in the binomial model: characterisation and convergence / Favero, Gino; Vargiolu, T.. - In: MATHEMATICAL METHODS OF OPERATIONS RESEARCH. - ISSN 1432-2994. - 64 (2):(2006), pp. 237-253. [10.1007/s00186-006-0083-3]
File in questo prodotto:
File Dimensione Formato  
BinomGenAbstract.pdf

non disponibili

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 29.11 kB
Formato Adobe PDF
29.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
BinomGen.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 222.96 kB
Formato Adobe PDF
222.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1877465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact