The finite sample properties of the Fourier estimator of integrated volatility under market microstructure noise are studied. Analytic expressions for the bias and the mean squared error (MSE) of the contaminated estimator are derived. These formulae can be practically used to design optimal MSE-based estimators, which are very robust and efficient in the presence of noise. Moreover an empirical analysis based on a simulation study and on high-frequency logarithmic prices of the Italian stock index futures (FIB30) validates the theoretical results.

Robustness of Fourier Estimator of Integrated Volatility in the Presence of Microstructure Noise / M. E., Mancino; Sanfelici, Simona. - In: COMPUTATIONAL STATISTICS & DATA ANALYSIS. - ISSN 0167-9473. - 52:(2008), pp. 2966-2989. [10.1016/j.csda.2007.07.014]

Robustness of Fourier Estimator of Integrated Volatility in the Presence of Microstructure Noise

SANFELICI, Simona
2008-01-01

Abstract

The finite sample properties of the Fourier estimator of integrated volatility under market microstructure noise are studied. Analytic expressions for the bias and the mean squared error (MSE) of the contaminated estimator are derived. These formulae can be practically used to design optimal MSE-based estimators, which are very robust and efficient in the presence of noise. Moreover an empirical analysis based on a simulation study and on high-frequency logarithmic prices of the Italian stock index futures (FIB30) validates the theoretical results.
2008
Robustness of Fourier Estimator of Integrated Volatility in the Presence of Microstructure Noise / M. E., Mancino; Sanfelici, Simona. - In: COMPUTATIONAL STATISTICS & DATA ANALYSIS. - ISSN 0167-9473. - 52:(2008), pp. 2966-2989. [10.1016/j.csda.2007.07.014]
File in questo prodotto:
File Dimensione Formato  
AbstractCSDA.pdf

non disponibili

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.03 kB
Formato Adobe PDF
7.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
COMSTA3772paper.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 876.19 kB
Formato Adobe PDF
876.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1877075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 52
social impact