The finite sample properties of the Fourier estimator of integrated volatility under market microstructure noise are studied. Analytic expressions for the bias and the mean squared error (MSE) of the contaminated estimator are derived. These formulae can be practically used to design optimal MSE-based estimators, which are very robust and efficient in the presence of noise. Moreover an empirical analysis based on a simulation study and on high-frequency logarithmic prices of the Italian stock index futures (FIB30) validates the theoretical results.
Robustness of Fourier Estimator of Integrated Volatility in the Presence of Microstructure Noise / M. E., Mancino; Sanfelici, Simona. - In: COMPUTATIONAL STATISTICS & DATA ANALYSIS. - ISSN 0167-9473. - 52:(2008), pp. 2966-2989. [10.1016/j.csda.2007.07.014]
Robustness of Fourier Estimator of Integrated Volatility in the Presence of Microstructure Noise
SANFELICI, Simona
2008-01-01
Abstract
The finite sample properties of the Fourier estimator of integrated volatility under market microstructure noise are studied. Analytic expressions for the bias and the mean squared error (MSE) of the contaminated estimator are derived. These formulae can be practically used to design optimal MSE-based estimators, which are very robust and efficient in the presence of noise. Moreover an empirical analysis based on a simulation study and on high-frequency logarithmic prices of the Italian stock index futures (FIB30) validates the theoretical results.File | Dimensione | Formato | |
---|---|---|---|
AbstractCSDA.pdf
non disponibili
Tipologia:
Abstract
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
7.03 kB
Formato
Adobe PDF
|
7.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
COMSTA3772paper.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
876.19 kB
Formato
Adobe PDF
|
876.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.