We study the $\infty$ - eigenvalue problem with respect to existence and uniqueness. The existence of minimizers is proved via Gamma - convergence. For the uniqueness, we restrict to a subclass of minimizers. We conclude with some examples.
The Minimal Gap Between $Λ_2(Ω)$ and $Λ_infty(Ω)$ in a Class of Convex Domains / Belloni, Marino; Oudet, E.. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 15:(2008), pp. 507-521.
The Minimal Gap Between $Λ_2(Ω)$ and $Λ_infty(Ω)$ in a Class of Convex Domains
BELLONI, Marino;
2008-01-01
Abstract
We study the $\infty$ - eigenvalue problem with respect to existence and uniqueness. The existence of minimizers is proved via Gamma - convergence. For the uniqueness, we restrict to a subclass of minimizers. We conclude with some examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2008-BeOu-JCA.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
196.85 kB
Formato
Adobe PDF
|
196.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.