We study the $\infty$ - eigenvalue problem with respect to existence and uniqueness. The existence of minimizers is proved via  Gamma - convergence. For the uniqueness, we restrict to a subclass of minimizers. We conclude with some examples.

The Minimal Gap Between $Λ_2(Ω)$ and $Λ_infty(Ω)$ in a Class of Convex Domains / Belloni, Marino; Oudet, E.. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 15:(2008), pp. 507-521.

The Minimal Gap Between $Λ_2(Ω)$ and $Λ_infty(Ω)$ in a Class of Convex Domains

BELLONI, Marino;
2008-01-01

Abstract

We study the $\infty$ - eigenvalue problem with respect to existence and uniqueness. The existence of minimizers is proved via  Gamma - convergence. For the uniqueness, we restrict to a subclass of minimizers. We conclude with some examples.
2008
The Minimal Gap Between $Λ_2(Ω)$ and $Λ_infty(Ω)$ in a Class of Convex Domains / Belloni, Marino; Oudet, E.. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - 15:(2008), pp. 507-521.
File in questo prodotto:
File Dimensione Formato  
2008-BeOu-JCA.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 196.85 kB
Formato Adobe PDF
196.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1865250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact