Solution structures for three members of the recently discovered cyanovirin-N (CV-N) homolog family of lectins have been determined. Cyanovirin-N homologs (CVNHs) from Tuber borchii, Ceratopteris richardii, and Neurospora crassa, representing each of the three phylogenetic groups, were selected. All proteins exhibit the same fold, and the overall structures resemble that of the founding member of the family, CV-N, albeit with noteworthy differences in loop conformation and detailed local structure. Since no data are available regarding the proteins' function or their natural ligands, extensive carbohydrate-binding studies were conducted. We delineated ligand-binding sites on all three proteins by nuclear magnetic resonance and identified which sugars interact by array screening. The number and location of binding sites vary for the three proteins, and different ligand specificities exist. Potential physiological roles for two family members, TbCVNH and NcCVNH, were probed in nutrition deprivation experiments that suggest a possible involvement of these proteins in lifestyle-related responses.

The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity / Koharudin, Lm; Viscomi, Ar; Jee, Jg; Ottonello, Simone; Gronenborn, Am. - In: STRUCTURE. - ISSN 0969-2126. - 16:(2008), pp. 570-584. [10.1016/j.str.2008.01.015]

The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity

OTTONELLO, Simone;
2008-01-01

Abstract

Solution structures for three members of the recently discovered cyanovirin-N (CV-N) homolog family of lectins have been determined. Cyanovirin-N homologs (CVNHs) from Tuber borchii, Ceratopteris richardii, and Neurospora crassa, representing each of the three phylogenetic groups, were selected. All proteins exhibit the same fold, and the overall structures resemble that of the founding member of the family, CV-N, albeit with noteworthy differences in loop conformation and detailed local structure. Since no data are available regarding the proteins' function or their natural ligands, extensive carbohydrate-binding studies were conducted. We delineated ligand-binding sites on all three proteins by nuclear magnetic resonance and identified which sugars interact by array screening. The number and location of binding sites vary for the three proteins, and different ligand specificities exist. Potential physiological roles for two family members, TbCVNH and NcCVNH, were probed in nutrition deprivation experiments that suggest a possible involvement of these proteins in lifestyle-related responses.
2008
The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity / Koharudin, Lm; Viscomi, Ar; Jee, Jg; Ottonello, Simone; Gronenborn, Am. - In: STRUCTURE. - ISSN 0969-2126. - 16:(2008), pp. 570-584. [10.1016/j.str.2008.01.015]
File in questo prodotto:
File Dimensione Formato  
CVNH_Koharudin et al_STRUCTURE 2008.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1841913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 36
social impact