We define a notion of Kato class of measures relative to a Riemannian strongly local p-homogeneous Dirichlet form and we prove a Harnack inequality (on balls that are small enough) for the positive solutions to a Schroedinger-type problem relative to the form with a potential in the Kato class.
Harnack inequality for the Schrodinger problem relative to strongly local Riemannian p-homogeneous forms with a potential in the Kato class / Biroli, M; Marchi, Silvana. - In: BOUNDARY VALUE PROBLEMS. - ISSN 1687-2762. - 2007:(2007), p. 24806. [10.1155/2007/24806]
Harnack inequality for the Schrodinger problem relative to strongly local Riemannian p-homogeneous forms with a potential in the Kato class
MARCHI, Silvana
2007-01-01
Abstract
We define a notion of Kato class of measures relative to a Riemannian strongly local p-homogeneous Dirichlet form and we prove a Harnack inequality (on balls that are small enough) for the positive solutions to a Schroedinger-type problem relative to the form with a potential in the Kato class.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MARCHI BIROLI february 2007 24806.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
229.35 kB
Formato
Adobe PDF
|
229.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.