We establish a Wiener criterion at the boundary for solutions of Dirichlet problems relative to p-homogeneous strongly local Riemannian Dirichlet forms. The result was known at the most for the subelliptic p-Laplacian. We apply a pointwise estimate we proved in our previous paper. Let us observe that the above cited forms include in particular the p-Lapalcian relative to Hormander vector fields with $C^{\infty}$ coefficients or the Grushin-type vector fields with eventually a weight in the $A_2$ Muckenhoupt class.

Wiener criterion at the boundary related to p-homogeneous strongly local Dirichlet forms / Biroli, M; Marchi, Silvana. - In: LE MATEMATICHE. - ISSN 0373-3505. - LXII:(2007), pp. 37-52.

Wiener criterion at the boundary related to p-homogeneous strongly local Dirichlet forms

MARCHI, Silvana
2007-01-01

Abstract

We establish a Wiener criterion at the boundary for solutions of Dirichlet problems relative to p-homogeneous strongly local Riemannian Dirichlet forms. The result was known at the most for the subelliptic p-Laplacian. We apply a pointwise estimate we proved in our previous paper. Let us observe that the above cited forms include in particular the p-Lapalcian relative to Hormander vector fields with $C^{\infty}$ coefficients or the Grushin-type vector fields with eventually a weight in the $A_2$ Muckenhoupt class.
2007
Wiener criterion at the boundary related to p-homogeneous strongly local Dirichlet forms / Biroli, M; Marchi, Silvana. - In: LE MATEMATICHE. - ISSN 0373-3505. - LXII:(2007), pp. 37-52.
File in questo prodotto:
File Dimensione Formato  
LeMat2007.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 133.4 kB
Formato Adobe PDF
133.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1802302
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact