The Dirichlet energy of Sobolev mappings between Riemannian manifolds is studied. After giving an explicit formula of the polyconvex extension of the energy for currents between manifolds, we prove a strong density result. As a consequence, we give an explicit formula for the relaxed energy. The fractional space of traces of W ^(1,2)-mappings is also treated.

The relaxed Dirichlet energy of manifold constrained mappings / Giaquinta, M.; Modica, G.; Mucci, Domenico. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 1:1(2008), pp. 1-51. [10.1515/ACV.2008.001]

The relaxed Dirichlet energy of manifold constrained mappings

MUCCI, Domenico
2008-01-01

Abstract

The Dirichlet energy of Sobolev mappings between Riemannian manifolds is studied. After giving an explicit formula of the polyconvex extension of the energy for currents between manifolds, we prove a strong density result. As a consequence, we give an explicit formula for the relaxed energy. The fractional space of traces of W ^(1,2)-mappings is also treated.
2008
The relaxed Dirichlet energy of manifold constrained mappings / Giaquinta, M.; Modica, G.; Mucci, Domenico. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - 1:1(2008), pp. 1-51. [10.1515/ACV.2008.001]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1800865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact