We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin-flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each structure we discuss the scaling properties and compute the dynamical exponents. We show that the exponent a_ for the integrated response function, at variance with all the other exponents, is independent of temperature and of the presence of pinning. This universal character suggests a strict relation between a_ and the topological properties of the networks, in analogy to what is observed on regular lattices.

Phase ordering kinetics on graphs / Burioni, Raffaella; Cassi, Davide; Corberi, F; Vezzani, A.. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 75:(2007), pp. 011113-011128. [10.1103/PhysRevE.75.011113]

Phase ordering kinetics on graphs

BURIONI, Raffaella;CASSI, Davide;
2007-01-01

Abstract

We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin-flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each structure we discuss the scaling properties and compute the dynamical exponents. We show that the exponent a_ for the integrated response function, at variance with all the other exponents, is independent of temperature and of the presence of pinning. This universal character suggests a strict relation between a_ and the topological properties of the networks, in analogy to what is observed on regular lattices.
2007
Phase ordering kinetics on graphs / Burioni, Raffaella; Cassi, Davide; Corberi, F; Vezzani, A.. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - 75:(2007), pp. 011113-011128. [10.1103/PhysRevE.75.011113]
File in questo prodotto:
File Dimensione Formato  
2007-Phase-ordering kinetic.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
AbstractCassi.docx

non disponibili

Tipologia: Abstract
Licenza: Creative commons
Dimensione 11.63 kB
Formato Microsoft Word XML
11.63 kB Microsoft Word XML   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1725734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact