We show that there is no topological vector space $X\subset L^\infty\cap L^1_{\loc} (\rn{}\times \rn{n})$ which embeds compactly in $L^1_{\loc}$, contains $BV_{\loc}\cap L^\infty$ and enjoys the following closure property: If $f\in X^n (\rn{}\times \rn{n})$ has bounded divergence and $u_0\in X (\rn{n})$, then there exists $u\in X (\rn{}\times \rn{n})$ which solves $$ \left\{\begin{array}{l} \partial_t u + {\rm div}\, (u f)\;=\; 0\\ \\ u (0, \cdot) \;=\; u_0\, \end{array}\right. $$ in the sense of distributions. $X (\rn{n})$ is defined as the set of functions $u_0\in L^\infty (\rn{n})$ such that $\tilde{u} (t,x):= u_0 (x)$ belongs to $X (\rn{}\times \rn{n})$. Our proof relies on an example of N.~Depauw showing an ill--posed transport equation whose vector field is ``almost $BV$''.

Oscillatory solutions to transport equations / Crippa, Gianluca; DE LELLIS, C.. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 55:(2006), pp. 1-13.

Oscillatory solutions to transport equations

CRIPPA, Gianluca;
2006-01-01

Abstract

We show that there is no topological vector space $X\subset L^\infty\cap L^1_{\loc} (\rn{}\times \rn{n})$ which embeds compactly in $L^1_{\loc}$, contains $BV_{\loc}\cap L^\infty$ and enjoys the following closure property: If $f\in X^n (\rn{}\times \rn{n})$ has bounded divergence and $u_0\in X (\rn{n})$, then there exists $u\in X (\rn{}\times \rn{n})$ which solves $$ \left\{\begin{array}{l} \partial_t u + {\rm div}\, (u f)\;=\; 0\\ \\ u (0, \cdot) \;=\; u_0\, \end{array}\right. $$ in the sense of distributions. $X (\rn{n})$ is defined as the set of functions $u_0\in L^\infty (\rn{n})$ such that $\tilde{u} (t,x):= u_0 (x)$ belongs to $X (\rn{}\times \rn{n})$. Our proof relies on an example of N.~Depauw showing an ill--posed transport equation whose vector field is ``almost $BV$''.
2006
Oscillatory solutions to transport equations / Crippa, Gianluca; DE LELLIS, C.. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 55:(2006), pp. 1-13.
File in questo prodotto:
File Dimensione Formato  
crippa_indiana.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 221.59 kB
Formato Adobe PDF
221.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/1652431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact